Zheng Bujingda, Xie Yunchao, Xu Shichen, Meng Andrew C, Wang Shaoyun, Wu Yuchao, Yang Shuhong, Wan Caixia, Huang Guoliang, Tour James M, Lin Jian
Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA.
Department of Chemistry, Rice University, Houston, 77005, TX, USA.
Nat Commun. 2024 May 28;15(1):4541. doi: 10.1038/s41467-024-48919-5.
In nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.
在自然界中,结构和功能材料常常形成程序化的三维(3D)组件来执行日常功能,这启发研究人员设计多功能3D结构。尽管取得了很大进展,但将各种材料制造并组装成功能性3D物体的通用方法仍然有限。在此,为了弥补这一差距,我们通过将3D打印(熔融丝材制造(FFF)、直接墨水书写(DIW))与自由形式激光诱导(FLI)相结合,展示了一种自由形式多材料组装工艺(FMAP)。3D打印进行3D结构材料组装,而FLI通过协同的、程序化的控制在预先设计的3D空间中制造功能材料。本文展示了FMAP在3D结构内空间制造各种类型功能材料(金属、半导体)的多功能性,这些材料可应用于LED显示的交叉开关电路、用于多功能弹簧和触觉操纵器的应变传感器、紫外线传感器、作为磁编码器的3D电磁铁、用于人机界面的电容式传感器,以及带有用于纳米材料合成的内置焦耳加热器的集成微流控反应器。这一成功突出了FMAP重新定义用于程序化多材料组装的3D打印和FLI的潜力。