Suppr超能文献

虚拟实验服:已验证来源信息对社交媒体帖子可信度的影响。

Virtual lab coats: The effects of verified source information on social media post credibility.

机构信息

Interdisciplinary Hub on Digitisation and Society, Radboud University, Nijmegen, The Netherlands.

Institute of Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.

出版信息

PLoS One. 2024 May 29;19(5):e0302323. doi: 10.1371/journal.pone.0302323. eCollection 2024.

Abstract

Social media platform's lack of control over its content made way to the fundamental problem of misinformation. As users struggle with determining the truth, social media platforms should strive to empower users to make more accurate credibility judgements. A good starting point is a more accurate perception of the credibility of the message's source. Two pre-registered online experiments (N = 525;N = 590) were conducted to investigate how verified source information affects perceptions of Tweets (study 1) and generic social media posts (study 2). In both studies, participants reviewed posts by an unknown author and rated source and message credibility, as well as likelihood of sharing. Posts varied by the information provided about the account holder: (1) none, (2) the popular method of verified source identity, or (3) verified credential of the account holder (e.g., employer, role), a novel approach. The credential was either relevant to the content of the post or not. Study 1 presented the credential as a badge, whereas study 2 included the credential as both a badge and a signature. During an initial intuitive response, the effects of these cues were generally unpredictable. Yet, after explanation how to interpret the different source cues, two prevalent reasoning errors surfaced. First, participants conflated source authenticity and message credibility. Second, messages from sources with a verified credential were perceived as more credible, regardless of whether this credential was context relevant (i.e., virtual lab coat effect). These reasoning errors are particularly concerning in the context of misinformation. In sum, credential verification as tested in this paper seems ineffective in empowering users to make more accurate credibility judgements. Yet, future research could investigate alternative implementations of this promising technology.

摘要

社交媒体平台对其内容缺乏控制,这导致了错误信息这一根本问题的出现。由于用户在确定真相方面存在困难,社交媒体平台应该努力赋予用户做出更准确可信度判断的能力。一个好的起点是更准确地感知信息源的可信度。本研究通过两个预先注册的在线实验(N=525;N=590)来调查验证后的源信息如何影响对推文(研究 1)和一般社交媒体帖子(研究 2)的感知。在这两项研究中,参与者都查看了一位不知名作者发布的帖子,并对来源和信息可信度以及分享意愿进行了评分。帖子的信息提供方式各不相同:(1)不提供任何信息,(2)使用验证源身份的常用方法,或(3)验证账户持有者的凭证(例如雇主、角色),这是一种新颖的方法。凭证与帖子的内容相关或不相关。研究 1 将凭证作为徽章展示,而研究 2 则将凭证同时作为徽章和签名展示。在初始直观反应中,这些线索的效果通常是不可预测的。然而,在解释如何解释不同的源线索之后,出现了两个普遍的推理错误。首先,参与者将源真实性和信息可信度混为一谈。其次,无论验证凭证是否与上下文相关(即虚拟实验室外套效应),来自具有验证凭证的来源的信息都被认为更可信。这些推理错误在错误信息的背景下尤为令人担忧。总之,本文测试的凭证验证似乎无法赋予用户做出更准确可信度判断的能力。然而,未来的研究可以探索这种有前途的技术的替代实现方式。

相似文献

1
Virtual lab coats: The effects of verified source information on social media post credibility.
PLoS One. 2024 May 29;19(5):e0302323. doi: 10.1371/journal.pone.0302323. eCollection 2024.
5
The Impact of Social Endorsement Cues and Manipulability Concerns on Perceptions of News Credibility.
Cyberpsychol Behav Soc Netw. 2021 Jun;24(6):384-389. doi: 10.1089/cyber.2020.0566. Epub 2021 Mar 2.
7
Authenticity and credibility aware detection of adverse drug events from social media.
Int J Med Inform. 2018 Dec;120:157-171. doi: 10.1016/j.ijmedinf.2018.10.003. Epub 2018 Oct 13.
8
Authenticity and credibility aware detection of adverse drug events from social media.
Int J Med Inform. 2018 Dec;120:101-115. doi: 10.1016/j.ijmedinf.2018.09.002. Epub 2018 Oct 13.
9
Credibility of misinformation source moderates the effectiveness of corrective messages on social media.
Public Underst Sci. 2024 Jul;33(5):587-603. doi: 10.1177/09636625231215979. Epub 2023 Dec 31.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
Cost-effectiveness of population screening for atrial fibrillation: the STROKESTOP study.
Eur Heart J. 2023 Jan 14;44(3):196-204. doi: 10.1093/eurheartj/ehac547.
3
Understanding the Differences Between Bayesian and Frequentist Statistics.
Int J Radiat Oncol Biol Phys. 2022 Apr 1;112(5):1076-1082. doi: 10.1016/j.ijrobp.2021.12.011.
4
The Psychology of Fake News.
Trends Cogn Sci. 2021 May;25(5):388-402. doi: 10.1016/j.tics.2021.02.007. Epub 2021 Mar 15.
5
Shifting attention to accuracy can reduce misinformation online.
Nature. 2021 Apr;592(7855):590-595. doi: 10.1038/s41586-021-03344-2. Epub 2021 Mar 17.
7
Exposure to untrustworthy websites in the 2016 US election.
Nat Hum Behav. 2020 May;4(5):472-480. doi: 10.1038/s41562-020-0833-x. Epub 2020 Mar 2.
8
Self-reported willingness to share political news articles in online surveys correlates with actual sharing on Twitter.
PLoS One. 2020 Feb 10;15(2):e0228882. doi: 10.1371/journal.pone.0228882. eCollection 2020.
9
Who falls for fake news? The roles of bullshit receptivity, overclaiming, familiarity, and analytic thinking.
J Pers. 2020 Apr;88(2):185-200. doi: 10.1111/jopy.12476. Epub 2019 Apr 12.
10
The Blue Check of Credibility: Does Account Verification Matter When Evaluating News on Twitter?
Cyberpsychol Behav Soc Netw. 2019 Apr;22(4):283-287. doi: 10.1089/cyber.2018.0475. Epub 2019 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验