Suppr超能文献

为什么人们会在网上传播虚假信息?信息和观众特征对自我报告的社交媒体虚假信息分享可能性的影响。

Why do people spread false information online? The effects of message and viewer characteristics on self-reported likelihood of sharing social media disinformation.

机构信息

School of Social Sciences, University of Westminster, London, United Kingdom.

出版信息

PLoS One. 2020 Oct 7;15(10):e0239666. doi: 10.1371/journal.pone.0239666. eCollection 2020.

Abstract

Individuals who encounter false information on social media may actively spread it further, by sharing or otherwise engaging with it. Much of the spread of disinformation can thus be attributed to human action. Four studies (total N = 2,634) explored the effect of message attributes (authoritativeness of source, consensus indicators), viewer characteristics (digital literacy, personality, and demographic variables) and their interaction (consistency between message and recipient beliefs) on self-reported likelihood of spreading examples of disinformation. Participants also reported whether they had shared real-world disinformation in the past. Reported likelihood of sharing was not influenced by authoritativeness of the source of the material, nor indicators of how many other people had previously engaged with it. Participants' level of digital literacy had little effect on their responses. The people reporting the greatest likelihood of sharing disinformation were those who thought it likely to be true, or who had pre-existing attitudes consistent with it. They were likely to have previous familiarity with the materials. Across the four studies, personality (lower Agreeableness and Conscientiousness, higher Extraversion and Neuroticism) and demographic variables (male gender, lower age and lower education) were weakly and inconsistently associated with self-reported likelihood of sharing. These findings have implications for strategies more or less likely to work in countering disinformation in social media.

摘要

个人在社交媒体上遇到虚假信息后,可能会通过分享或其他方式进一步传播这些信息。因此,大量的虚假信息传播可以归因于人类的行为。四项研究(总计 N = 2634)探讨了信息属性(来源的权威性、共识指标)、观众特征(数字素养、个性和人口统计学变量)及其相互作用(信息与接收者信念之间的一致性)对自我报告传播虚假信息可能性的影响。参与者还报告了他们过去是否分享过现实世界中的虚假信息。报告的分享可能性不受信息来源权威性的影响,也不受有多少其他人之前参与过该信息的指标影响。参与者的数字素养水平对他们的反应影响不大。那些认为虚假信息很可能是真实的,或者与虚假信息态度一致的人,最有可能分享虚假信息。他们可能以前就熟悉这些材料。在这四项研究中,人格(较低的宜人性和尽责性,较高的外向性和神经质)和人口统计学变量(男性性别、较低的年龄和较低的教育水平)与自我报告的分享可能性弱相关且不一致。这些发现对社交媒体中对抗虚假信息的策略的有效性具有一定的启示意义。

相似文献

9
[Mis- and disinformation in social media: mitigating risks in digital health communication].[社交媒体中的错误信息和虚假信息:减轻数字健康传播中的风险]
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2024 Mar;67(3):300-307. doi: 10.1007/s00103-024-03836-2. Epub 2024 Feb 8.
10
Discovering why people believe disinformation about healthcare.探究人们为何会相信医疗保健方面的虚假信息。
PLoS One. 2024 Mar 21;19(3):e0300497. doi: 10.1371/journal.pone.0300497. eCollection 2024.

引用本文的文献

本文引用的文献

5
The spread of low-credibility content by social bots.社交机器人传播低可信度内容。
Nat Commun. 2018 Nov 20;9(1):4787. doi: 10.1038/s41467-018-06930-7.
6
Prior exposure increases perceived accuracy of fake news.先前的接触会增加对假新闻的感知准确性。
J Exp Psychol Gen. 2018 Dec;147(12):1865-1880. doi: 10.1037/xge0000465. Epub 2018 Sep 24.
7
The spread of true and false news online.网络上真实和虚假新闻的传播。
Science. 2018 Mar 9;359(6380):1146-1151. doi: 10.1126/science.aap9559.
8
Psychological targeting as an effective approach to digital mass persuasion.心理定位作为一种有效的数字大众说服方法。
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12714-12719. doi: 10.1073/pnas.1710966114. Epub 2017 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验