Suppr超能文献

绝经前后妇女体脂肪分布与三大营养素摄入的不同关联。

The different association between fat mass distribution and intake of three major nutrients in pre- and postmenopausal women.

机构信息

Department of Obstetrics and Gynecology, Yulin Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

出版信息

PLoS One. 2024 May 29;19(5):e0304098. doi: 10.1371/journal.pone.0304098. eCollection 2024.

Abstract

BACKGROUND

Obesity, characterized by excessive body fat accumulation, is associated with various chronic health conditions. Body fat plays a crucial role in health outcomes, and nutrient intake is a contributing factor. Menopause further influences body fat, but the precise relationships between nutrients and fat mass distribution in pre- and post-menopausal women are unclear.

METHODS

Data from 4751 adult women aged ≥18 years old (3855 pre-menopausal, 896 post-menopausal) with completed information were obtained from the National Health and Examination Survey (NHANES) from 2011 to 2018. Multivariate linear regression models were used to examine the associations between protein, carbohydrate, fat intake and total percent fat (TPF), android percent fat (APF), gynoid percent fat (GPF), android to gynoid ratio (A/G), subcutaneous adipose tissue mass (SAT), visceral adipose tissue mass (VAT). Subgroup analyses, stratified by menopausal status, were also conducted. Additionally, we employed smoothing curve fitting techniques to investigate potential non-linear relationships between fat mass distribution and nutrient intake.

RESULTS

Compared with pre-menopausal women, post-menopausal women had higher body fat, BMI, and metabolic indicators but lower nutrient intake (All p<0.05). In the overall analysis, we found significant correlations between nutrient intake and fat mass. Specifically, protein intake was negatively correlated with TPF (β = -0.017, 95% CI: -0.030, -0.005), APF (β = -0.028, 95% CI: -0.044, -0.012), GPF (β = -0.019, 95% CI: -0.030, -0.008), while fat intake showed positive correlations with these measures (SAT: β = 2.769, 95% CI: 0.860, 4.678). Carbohydrate intake exhibited mixed associations. Notably, body fat mass-nutrient intake correlations differed by menopausal status. Generally speaking, protein intake showed negative correlations with body fat distribution in pre-menopausal women but positive correlations in post-menopausal women. Carbohydrate intake revealed significant negative associations with abdominal and visceral fat in post-menopausal women, while fat intake was consistently positive across all fat distribution indices, especially impacting visceral fat in post-menopausal women.

CONCLUSION

Dietary intake plays a crucial role in body fat distribution, with menopausal status significantly influencing the impact of nutrients on specific fat distribution metrics. The study emphasizes the need for dietary guidelines to consider the nutritional needs and health challenges unique to women at different life stages, particularly concerning menopausal status, to effectively manage obesity.

摘要

背景

肥胖的特征是体脂肪过度堆积,与各种慢性健康状况有关。体脂肪在健康结果中起着关键作用,而营养摄入是一个促成因素。绝经期进一步影响体脂肪,但在绝经前和绝经后妇女中,营养素与脂肪质量分布之间的精确关系尚不清楚。

方法

本研究的数据来自于 2011 年至 2018 年期间完成的国家健康和体检调查(NHANES)中的 4751 名年龄≥18 岁的成年女性(3855 名绝经前,896 名绝经后)。采用多变量线性回归模型来研究蛋白质、碳水化合物、脂肪摄入与总体脂百分比(TPF)、腹部体脂百分比(APF)、臀部体脂百分比(GPF)、腰臀比(A/G)、皮下脂肪组织质量(SAT)、内脏脂肪组织质量(VAT)之间的关系。还按绝经状态进行了亚组分析。此外,我们采用平滑曲线拟合技术来研究脂肪质量分布与营养摄入之间的潜在非线性关系。

结果

与绝经前妇女相比,绝经后妇女的体脂肪、BMI 和代谢指标较高,但营养摄入较低(均 P<0.05)。在整体分析中,我们发现营养摄入与体脂肪之间存在显著相关性。具体而言,蛋白质摄入与 TPF(β=-0.017,95%CI:-0.030,-0.005)、APF(β=-0.028,95%CI:-0.044,-0.012)、GPF(β=-0.019,95%CI:-0.030,-0.008)呈负相关,而脂肪摄入与这些指标呈正相关(SAT:β=2.769,95%CI:0.860,4.678)。碳水化合物摄入表现出混合关联。值得注意的是,体脂肪-营养摄入的相关性因绝经状态而异。一般来说,蛋白质摄入与绝经前妇女的体脂肪分布呈负相关,而绝经后妇女的蛋白质摄入与体脂肪分布呈正相关。碳水化合物摄入与绝经后妇女的腹部和内脏脂肪呈显著负相关,而脂肪摄入与所有体脂肪分布指标均呈正相关,特别是绝经后妇女的内脏脂肪。

结论

饮食摄入在体脂肪分布中起着关键作用,绝经状态显著影响营养素对特定体脂肪分布指标的影响。本研究强调了制定饮食指南时需要考虑到不同生命阶段女性的营养需求和健康挑战,特别是要考虑到绝经状态,以有效地管理肥胖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0eb2/11135700/f04dbbbb2c7a/pone.0304098.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验