School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China.
Chaos. 2024 May 1;34(5). doi: 10.1063/5.0204169.
A time-delayed virus dynamic model is proposed with general monotonic incidence, different nonlinear CTL (cytotoxic T lymphocyte) responses [CTL elimination function pyg1(z) and CTL stimulation function cyg2(z)], and immune impairment. Indeed, the different CTL responses pose challenges in obtaining the dissipativeness of the model. By constructing appropriate Lyapunov functionals with some detailed analysis techniques, the global stability results of all equilibria of the model are obtained. By the way, we point out that the partial derivative fv(x,0) is increasing (but not necessarily strictly) in x>0 for the general monotonic incidence f(x,v). However, some papers defaulted that the partial derivative was strictly increasing. Our main results show that if the basic reproduction number R0≤1, the infection-free equilibrium E0 is globally asymptotically stable (GAS); if CTL stimulation function cyg2(z)=0 for z=0 and the CTL threshold parameter R1≤1<R0, then the immunity-inactivated infection equilibrium E1 is GAS; if the immunity-activated infection equilibrium E+ exists, then it is GAS. Two specific examples are provided to illustrate the applicability of the main results. The main results acquired in this paper improve or extend some of the existing results.
提出了一个具有一般单调发生率、不同非线性 CTL(细胞毒性 T 淋巴细胞)反应[CTL 消除函数 pyg1(z)和 CTL 刺激函数 cyg2(z)]和免疫损伤的时滞病毒动力学模型。事实上,不同的 CTL 反应在获得模型的耗散性方面带来了挑战。通过构建适当的李雅普诺夫泛函,并运用一些详细的分析技术,得到了模型所有平衡点的全局稳定性结果。顺便指出,对于一般单调发生率 f(x,v),fv(x,0)的偏导数在 x>0 时是单调递增的(但不一定是严格递增的)。然而,一些论文默认偏导数是严格递增的。我们的主要结果表明,如果基本再生数 R0≤1,则无感染平衡点 E0 是全局渐近稳定的(GAS);如果 CTL 刺激函数 cyg2(z)=0 对于 z=0 且 CTL 阈值参数 R1≤1<R0,则免疫失活感染平衡点 E1 是 GAS;如果免疫激活感染平衡点 E+存在,则它是 GAS。提供了两个具体的例子来说明主要结果的适用性。本文得到的主要结果改进或扩展了一些现有的结果。