Suppr超能文献

综合信息分解揭示了计算机模拟和体外神经元网络的主要结构特征。

Integrated information decomposition unveils major structural traits of in silico and in vitro neuronal networks.

机构信息

Department of Electromagnetism and Physics of the Matter & Institute Carlos I for Theoretical and Computational Physics, University of Granada, 18071 Granada, Spain.

Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, 111451 San Lorenzo, Paraguay.

出版信息

Chaos. 2024 May 1;34(5). doi: 10.1063/5.0201454.

Abstract

The properties of complex networked systems arise from the interplay between the dynamics of their elements and the underlying topology. Thus, to understand their behavior, it is crucial to convene as much information as possible about their topological organization. However, in large systems, such as neuronal networks, the reconstruction of such topology is usually carried out from the information encoded in the dynamics on the network, such as spike train time series, and by measuring the transfer entropy between system elements. The topological information recovered by these methods does not necessarily capture the connectivity layout, but rather the causal flow of information between elements. New theoretical frameworks, such as Integrated Information Decomposition (Φ-ID), allow one to explore the modes in which information can flow between parts of a system, opening a rich landscape of interactions between network topology, dynamics, and information. Here, we apply Φ-ID on in silico and in vitro data to decompose the usual transfer entropy measure into different modes of information transfer, namely, synergistic, redundant, or unique. We demonstrate that the unique information transfer is the most relevant measure to uncover structural topological details from network activity data, while redundant information only introduces residual information for this application. Although the retrieved network connectivity is still functional, it captures more details of the underlying structural topology by avoiding to take into account emergent high-order interactions and information redundancy between elements, which are important for the functional behavior, but mask the detection of direct simple interactions between elements constituted by the structural network topology.

摘要

复杂网络系统的特性源于其元素的动力学与底层拓扑结构之间的相互作用。因此,为了理解它们的行为,收集尽可能多的有关其拓扑组织的信息是至关重要的。然而,在大型系统(如神经元网络)中,通常从网络上的动力学信息(如尖峰序列)中重建这种拓扑结构,并通过测量系统元素之间的转移熵来实现。这些方法恢复的拓扑信息不一定能捕捉到连接布局,而是元素之间信息的因果流动。新的理论框架,如综合信息分解(Φ-ID),可以用来探索信息在系统各部分之间流动的模式,为网络拓扑、动力学和信息之间的相互作用开辟了广阔的领域。在这里,我们应用Φ-ID 对模拟和体外数据进行分析,将常用的转移熵测量分解为不同的信息传递模式,即协同、冗余或独特。我们证明,独特的信息传递是从网络活动数据中揭示结构拓扑细节的最相关的度量,而冗余信息对于这种应用只引入了剩余信息。虽然恢复的网络连接仍然是功能性的,但它通过避免考虑元素之间出现的高阶相互作用和信息冗余,捕捉到了更多关于底层结构拓扑的细节,而这些信息对于功能行为很重要,但会掩盖对由结构网络拓扑构成的元素之间直接简单相互作用的检测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验