Suppr超能文献

一种具有多个自由度的受三维驱动折纸启发的可变形超材料。

A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom.

作者信息

Overvelde Johannes T B, de Jong Twan A, Shevchenko Yanina, Becerra Sergio A, Whitesides George M, Weaver James C, Hoberman Chuck, Bertoldi Katia

机构信息

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Nat Commun. 2016 Mar 11;7:10929. doi: 10.1038/ncomms10929.

Abstract

Reconfigurable devices, whose shape can be drastically altered, are central to expandable shelters, deployable space structures, reversible encapsulation systems and medical tools and robots. All these applications require structures whose shape can be actively controlled, both for deployment and to conform to the surrounding environment. While most current reconfigurable designs are application specific, here we present a mechanical metamaterial with tunable shape, volume and stiffness. Our approach exploits a simple modular origami-like design consisting of rigid faces and hinges, which are connected to form a periodic structure consisting of extruded cubes. We show both analytically and experimentally that the transformable metamaterial has three degrees of freedom, which can be actively deformed into numerous specific shapes through embedded actuation. The proposed metamaterial can be used to realize transformable structures with arbitrary architectures, highlighting a robust strategy for the design of reconfigurable devices over a wide range of length scales.

摘要

可重构设备的形状能够大幅改变,对于可扩展避难所、可展开空间结构、可逆封装系统以及医疗工具和机器人而言至关重要。所有这些应用都需要能够主动控制形状的结构,以便进行展开并与周围环境相适配。虽然当前大多数可重构设计都是针对特定应用的,但在此我们展示一种具有可调形状、体积和刚度的机械超材料。我们的方法采用了一种简单的类似模块化折纸的设计,由刚性面和铰链组成,它们相互连接形成一个由挤压立方体构成的周期性结构。我们通过分析和实验表明,这种可变形超材料具有三个自由度,通过嵌入式驱动可以主动变形为多种特定形状。所提出的超材料可用于实现具有任意架构的可变形结构,凸显了一种在广泛长度尺度上设计可重构设备的稳健策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada2/4793042/9a387453f978/ncomms10929-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验