Suppr超能文献

来自智能手表数据的数字结果测量与帕金森病的非运动特征相关。

Digital outcome measures from smartwatch data relate to non-motor features of Parkinson's disease.

作者信息

Schalkamp Ann-Kathrin, Harrison Neil A, Peall Kathryn J, Sandor Cynthia

机构信息

Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, United Kingdom.

UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.

出版信息

NPJ Parkinsons Dis. 2024 May 29;10(1):110. doi: 10.1038/s41531-024-00719-w.

Abstract

Monitoring of Parkinson's disease (PD) has seen substantial improvement over recent years as digital sensors enable a passive and continuous collection of information in the home environment. However, the primary focus of this work has been motor symptoms, with little focus on the non-motor aspects of the disease. To address this, we combined longitudinal clinical non-motor assessment data and digital multi-sensor data from the Verily Study Watch for 149 participants from the Parkinson's Progression Monitoring Initiative (PPMI) cohort with a diagnosis of PD. We show that digitally collected physical activity and sleep measures significantly relate to clinical non-motor assessments of cognitive, autonomic, and daily living impairment. However, the poor predictive performance we observed, highlights the need for better targeted digital outcome measures to enable monitoring of non-motor symptoms.

摘要

近年来,随着数字传感器能够在家庭环境中被动且持续地收集信息,帕金森病(PD)的监测有了显著改善。然而,这项工作主要关注运动症状,对该疾病的非运动方面关注甚少。为了解决这一问题,我们将纵向临床非运动评估数据与来自Verily研究手表的数字多传感器数据相结合,这些数据来自帕金森病进展监测计划(PPMI)队列中149名被诊断为PD的参与者。我们发现,通过数字方式收集的身体活动和睡眠指标与认知、自主神经和日常生活受损的临床非运动评估显著相关。然而,我们观察到的预测性能不佳,凸显了需要更好地针对特定数字结果指标,以便能够监测非运动症状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f958/11137004/cd94db4efbdf/41531_2024_719_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验