Suppr超能文献

用于增强水分解的金属氧氮化物纳米茎上发芽的二维cMOF@LDHs杂化纳米花瓣中金属氮化物位点的原位稳定化

In-situ stabilization of metal-nitride sites in sprouted 2D cMOF@LDHs hetero-nano petals on metaloxynitrides nanostems for enhanced water splitting.

作者信息

Rezaee Sharifeh, Shahrokhian Saeed, Li Qing

机构信息

Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.

Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.

出版信息

J Colloid Interface Sci. 2024 Oct;671:394-409. doi: 10.1016/j.jcis.2024.05.180. Epub 2024 May 23.

Abstract

Addressing the challenges of enhancing water-splitting efficiency necessitates the exploration and rational design of high-performance and durable electrocatalysts with appealing nanoarchitectures. In this study, we present the design and fabrication of conjugated cMOF/LDH hetero-nano petals decorated with monodispersed Metal-N sites, which are uniformly shelled over tungsten oxynitride (WNO) nanowire arrays to form a unique core-shell architecture. For this rational engineering, WNO nanowire arrays were grown on carbon cloth. Then, a thin-layered Ru-Co-Fe layered double hydroxide (RuCoFe/LDH) was deposited around these wires, resulting in a highly porous three-dimensional array of hierarchical hetero RuCoFe-LDHs@WNO-NWs core-shell nanowires (RuCoFe-NSs@WNO-NWs). Subsequently, the linkers coordinated with the RuCoFe-LDH nanosheets and transformed them in-situ into the RuCoFe-cMOF nano petals (RuCoFe-NPs@WNO-NWs). Notably, the linker's amino groups functioned as hooks for precisely anchoring and stabilizing metal sites, forming the metal nitride (M-N) moieties. Interestingly, the designed bi-functional catalyst exhibited superior catalytic activities for both OER (230 mV @ 10 mAcm) and HER (49 mV @ 10 mAcm) in an alkaline medium. Additionally, an electrolyzer cell employing Ru-CoFe-NPs@WNO-NWs as a bi-functional electrocatalyst required 1.49V to reach a current density of 10 mA cm. These remarkable catalytic performances can be attributed to several key factors, including opulent exposed active sites, an efficient charge/mass transport pathway, an optimized electronic structure, and an interfacial synergy effect. Hence, this study provides a new perspective for the design of efficient bi-functional electrocatalysts for use in the energy related electrochemical devices.

摘要

应对提高水分解效率的挑战需要探索和合理设计具有吸引人的纳米结构的高性能、耐用的电催化剂。在本研究中,我们展示了共轭cMOF/LDH杂化纳米花瓣的设计与制备,其装饰有单分散的金属氮位点,这些位点均匀地包覆在氮氧化钨(WNO)纳米线阵列上,形成独特的核壳结构。为了进行这种合理的工程设计,WNO纳米线阵列生长在碳布上。然后,在这些线周围沉积一层薄的Ru-Co-Fe层状双氢氧化物(RuCoFe/LDH),形成高度多孔的三维分层杂化RuCoFe-LDHs@WNO-NWs核壳纳米线阵列(RuCoFe-NSs@WNO-NWs)。随后,连接体与RuCoFe-LDH纳米片配位并将它们原位转化为RuCoFe-cMOF纳米花瓣(RuCoFe-NPs@WNO-NWs)。值得注意的是,连接体的氨基起到钩子的作用,用于精确锚定和稳定金属位点,形成金属氮化物(M-N)部分。有趣的是,所设计的双功能催化剂在碱性介质中对析氧反应(在10 mAcm时为230 mV)和析氢反应(在10 mAcm时为49 mV)均表现出优异的催化活性。此外,采用Ru-CoFe-NPs@WNO-NWs作为双功能电催化剂的电解槽电池在达到10 mA cm的电流密度时需要1.49V。这些显著的催化性能可归因于几个关键因素,包括丰富暴露的活性位点、高效的电荷/质量传输途径、优化的电子结构以及界面协同效应。因此,本研究为用于与能源相关的电化学装置的高效双功能电催化剂的设计提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验