Martín Lorena Roldán, Santiago Luis Rodríguez, Korendovych Ivan V, Sodupe Mariona, Maréchal Jean-Didier
Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
Methods Enzymol. 2024;697:211-245. doi: 10.1016/bs.mie.2024.03.021. Epub 2024 Apr 15.
Among the important questions in supramolecular peptide self-assemblies are their interactions with metallic compounds and ions. In the last decade, intensive efforts have been devoted to understanding the structural properties of these interactions including their dynamical and catalytic impact in natural and de novo systems. Since structural insights from experimental approaches could be particularly challenging, computational chemistry methods are interesting complementary tools. Here, we present the general multiscale strategies we developed and applied for the study of metallopeptide assemblies. These strategies include prediction of metal binding site, docking of metallic moieties, classical and accelerated molecular dynamics and finally QM/MM calculations. The systems of choice for this chapter are, on one side, peptides involved in neurodegenerative diseases and, on the other, de novo fibrillar systems with catalytic properties. Both successes and remaining challenges are highlighted so that the protocol could be apply to other system of this kind.
超分子肽自组装中的重要问题之一是它们与金属化合物和离子的相互作用。在过去十年中,人们致力于理解这些相互作用的结构特性,包括它们在天然和从头设计系统中的动力学和催化影响。由于从实验方法获得结构见解可能特别具有挑战性,计算化学方法是有趣的补充工具。在这里,我们展示了我们开发并应用于金属肽组装研究的一般多尺度策略。这些策略包括金属结合位点的预测、金属部分的对接、经典和加速分子动力学,最后是量子力学/分子力学计算。本章选择的系统一方面是与神经退行性疾病相关的肽,另一方面是具有催化特性的从头设计纤维状系统。文中突出了成功之处和仍然存在的挑战,以便该方案可以应用于其他此类系统。