Dowling Jacqueline A, Ifkovits Zachary P, Carim Azhar I, Evans Jake M, Swint Madeleine C, Ye Alexandre Z, Richter Matthias H, Li Anna X, Lewis Nathan S
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Division of Chemistry and Chemical Engineering and Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States.
ACS Appl Energy Mater. 2024 Mar 25;7(10):4288-4293. doi: 10.1021/acsaem.4c00135. eCollection 2024 May 27.
Manganese antimonate (MnSbO) electrocatalysts for the oxygen-evolution reaction (OER) were synthesized via chemical vapor deposition. Mn-rich rutile MnSbO catalysts on fluorine-doped tin oxide (FTO) supports drove the OER for 168 h (7 days) at 10 mA cm with a time-averaged overpotential of 687 ± 9 mV and with >97% Faradaic efficiency. Time-dependent anolyte composition analysis revealed the steady dissolution of Mn and Sb. Extended durability analysis confirmed that Mn-rich MnSbO materials are more active but dissolve at a faster rate than previously reported Sb-rich MnSbO alloys.
通过化学气相沉积法合成了用于析氧反应(OER)的锑酸锰(MnSbO)电催化剂。氟掺杂氧化锡(FTO)载体上富含锰的金红石型MnSbO催化剂在10 mA cm²的电流密度下驱动OER达168小时(7天),时间平均过电位为687 ± 9 mV,法拉第效率>97%。随时间变化的阳极电解液成分分析表明Mn和Sb会稳定溶解。延长耐久性分析证实,富含锰的MnSbO材料活性更高,但比之前报道的富含Sb的MnSbO合金溶解速度更快。