Rainko Denis, Ikonic Zoran, Vukmirović Nenad, Stange Daniela, von den Driesch Nils, Grützmacher Detlev, Buca Dan
Peter Grünberg Institute (PGI 9) and JARA-Fundamentals of Future Information Technologies, Forschungszentrum Jülich, 52425, Germany.
Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom.
Sci Rep. 2018 Oct 22;8(1):15557. doi: 10.1038/s41598-018-33820-1.
Since the first demonstration of lasing in direct bandgap GeSn semiconductors, the research efforts for the realization of electrically pumped group IV lasers monolithically integrated on Si have significantly intensified. This led to epitaxial studies of GeSn/SiGeSn hetero- and nanostructures, where charge carrier confinement strongly improves the radiative emission properties. Based on recent experimental literature data, in this report we discuss the advantages of GeSn/SiGeSn multi quantum well and quantum dot structures, aiming to propose a roadmap for group IV epitaxy. Calculations based on 8-band k∙p and effective mass method have been performed to determine band discontinuities, the energy difference between Γ- and L-valley conduction band edges, and optical properties such as material gain and optical cross section. The effects of these parameters are systematically analyzed for an experimentally achievable range of Sn (10 to 20 at.%) and Si (1 to 10 at.%) contents, as well as strain values (-1 to 1%). We show that charge carriers can be efficiently confined in the active region of optical devices for experimentally acceptable Sn contents in both multi quantum well and quantum dot configurations.
自从在直接带隙GeSn半导体中首次实现激光发射以来,为实现单片集成在硅上的电泵浦IV族激光器所做的研究工作显著加强。这导致了对GeSn/SiGeSn异质结构和纳米结构的外延研究,其中载流子限制极大地改善了辐射发射特性。基于最近的实验文献数据,在本报告中我们讨论了GeSn/SiGeSn多量子阱和量子点结构的优势,旨在提出IV族外延的路线图。已经基于8带k∙p和有效质量方法进行了计算,以确定能带不连续性、Γ谷和L谷导带边缘之间的能量差以及诸如材料增益和光学截面等光学性质。对于实验上可实现的Sn(10至20原子%)和Si(1至10原子%)含量范围以及应变值(-1至1%),系统地分析了这些参数的影响。我们表明,在多量子阱和量子点配置中,对于实验上可接受的Sn含量,载流子可以有效地限制在光电器件的有源区中。