Suppr超能文献

基于系数阈值处理的稳健高维回归及其在成像数据分析中的应用

Robust High-Dimensional Regression with Coefficient Thresholding and its Application to Imaging Data Analysis.

作者信息

Liu Bingyuan, Zhang Qi, Xue Lingzhou, Song Peter X-K, Kang Jian

机构信息

The Pennsylvania State University.

University of Michigan.

出版信息

J Am Stat Assoc. 2024;119(545):715-729. doi: 10.1080/01621459.2022.2142590. Epub 2022 Dec 8.

Abstract

It is important to develop statistical techniques to analyze high-dimensional data in the presence of both complex dependence and possible heavy tails and outliers in real-world applications such as imaging data analyses. We propose a new robust high-dimensional regression with coefficient thresholding, in which an efficient nonconvex estimation procedure is proposed through a thresholding function and the robust Huber loss. The proposed regularization method accounts for complex dependence structures in predictors and is robust against heavy tails and outliers in outcomes. Theoretically, we rigorously analyze the landscape of the population and empirical risk functions for the proposed method. The fine landscape enables us to establish both statistical consistency and computational convergence under the high-dimensional setting. We also present an extension to incorporate spatial information into the proposed method. Finite-sample properties of the proposed methods are examined by extensive simulation studies. An application concerns a scalar-on-image regression analysis for an association of psychiatric disorder measured by the general factor of psychopathology with features extracted from the task functional MRI data in the Adolescent Brain Cognitive Development (ABCD) study.

摘要

在诸如成像数据分析等实际应用中,开发统计技术以分析存在复杂依赖性以及可能的重尾和异常值的高维数据非常重要。我们提出了一种带系数阈值化的新型稳健高维回归方法,其中通过一个阈值化函数和稳健的Huber损失提出了一种有效的非凸估计程序。所提出的正则化方法考虑了预测变量中的复杂依赖结构,并且对结果中的重尾和异常值具有稳健性。从理论上讲,我们严格分析了所提方法的总体和经验风险函数的态势。良好的态势使我们能够在高维设置下建立统计一致性和计算收敛性。我们还提出了一种扩展方法,将空间信息纳入所提方法中。通过广泛的模拟研究检验了所提方法的有限样本性质。一个应用涉及标量对图像回归分析,该分析用于研究在青少年大脑认知发展(ABCD)研究中,由精神病理学一般因素测量的精神障碍与从任务功能磁共振成像数据中提取的特征之间的关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d659/11136478/8ca77e9f3b20/nihms-1862277-f0003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验