Liu Bingyuan, Xue Lingzhou
Department of Statistics, The Pennsylvania State University, University Park, PA, USA.
J Nonparametr Stat. 2024 Jun 6. doi: 10.1080/10485252.2024.2360551.
The sufficient dimension reduction (SDR) with sparsity has received much attention for analysing high-dimensional data. We study a nonparametric sparse kernel sufficient dimension reduction (KSDR) based on the reproducing kernel Hilbert space, which extends the methodology of the sparse SDR based on inverse moment methods. We establish the statistical consistency and efficient estimation of the sparse KSDR under the high-dimensional setting where the dimension diverges as the sample size increases. Computationally, we introduce a new nonconvex alternating directional method of multipliers (ADMM) to solve the challenging sparse SDR and propose the nonconvex linearised ADMM to solve the more challenging sparse KSDR. We study the computational guarantees of the proposed ADMMs and show an explicit iteration complexity bound to reach the stationary solution. We demonstrate the finite-sample properties in simulation studies and a real application.
用于分析高维数据的具有稀疏性的充分降维(SDR)已受到广泛关注。我们研究了一种基于再生核希尔伯特空间的非参数稀疏核充分降维(KSDR),它扩展了基于逆矩方法的稀疏SDR方法。我们在高维设置下建立了稀疏KSDR的统计一致性和有效估计,其中维度随着样本量的增加而发散。在计算方面,我们引入了一种新的非凸交替方向乘子法(ADMM)来解决具有挑战性的稀疏SDR,并提出了非凸线性化ADMM来解决更具挑战性的稀疏KSDR。我们研究了所提出的ADMM的计算保证,并展示了达到平稳解的显式迭代复杂度界。我们在模拟研究和实际应用中展示了有限样本性质。