Suppr超能文献

稀疏核充分降维

Sparse kernel sufficient dimension reduction.

作者信息

Liu Bingyuan, Xue Lingzhou

机构信息

Department of Statistics, The Pennsylvania State University, University Park, PA, USA.

出版信息

J Nonparametr Stat. 2024 Jun 6. doi: 10.1080/10485252.2024.2360551.

Abstract

The sufficient dimension reduction (SDR) with sparsity has received much attention for analysing high-dimensional data. We study a nonparametric sparse kernel sufficient dimension reduction (KSDR) based on the reproducing kernel Hilbert space, which extends the methodology of the sparse SDR based on inverse moment methods. We establish the statistical consistency and efficient estimation of the sparse KSDR under the high-dimensional setting where the dimension diverges as the sample size increases. Computationally, we introduce a new nonconvex alternating directional method of multipliers (ADMM) to solve the challenging sparse SDR and propose the nonconvex linearised ADMM to solve the more challenging sparse KSDR. We study the computational guarantees of the proposed ADMMs and show an explicit iteration complexity bound to reach the stationary solution. We demonstrate the finite-sample properties in simulation studies and a real application.

摘要

用于分析高维数据的具有稀疏性的充分降维(SDR)已受到广泛关注。我们研究了一种基于再生核希尔伯特空间的非参数稀疏核充分降维(KSDR),它扩展了基于逆矩方法的稀疏SDR方法。我们在高维设置下建立了稀疏KSDR的统计一致性和有效估计,其中维度随着样本量的增加而发散。在计算方面,我们引入了一种新的非凸交替方向乘子法(ADMM)来解决具有挑战性的稀疏SDR,并提出了非凸线性化ADMM来解决更具挑战性的稀疏KSDR。我们研究了所提出的ADMM的计算保证,并展示了达到平稳解的显式迭代复杂度界。我们在模拟研究和实际应用中展示了有限样本性质。

相似文献

1
Sparse kernel sufficient dimension reduction.稀疏核充分降维
J Nonparametr Stat. 2024 Jun 6. doi: 10.1080/10485252.2024.2360551.
2
Sparsity-Aware Distributed Learning for Gaussian Processes With Linear Multiple Kernel.
IEEE Trans Neural Netw Learn Syst. 2025 Aug;36(8):14869-14883. doi: 10.1109/TNNLS.2025.3531784.
6
Joint semiparametric kernel network regression.联合半参数核网络回归
Stat Med. 2023 Dec 10;42(28):5247-5265. doi: 10.1002/sim.9910. Epub 2023 Sep 19.
8
Tensor wheel completion for visual data with sparsity and smoothness on latent space.
Neural Netw. 2025 Jul 8;192:107713. doi: 10.1016/j.neunet.2025.107713.
10
Pseudorandom Hashing for Space-bounded Computation with Applications in Streaming.用于空间受限计算的伪随机哈希及其在流处理中的应用
Proc Annu Symp Found Comput Sci. 2023 Nov;2023:1515-1550. doi: 10.1109/focs57990.2023.00093. Epub 2023 Dec 22.

本文引用的文献

1
Dimension Reduction for Fréchet Regression.弗雷歇回归的降维
J Am Stat Assoc. 2024;119(548):2733-2747. doi: 10.1080/01621459.2023.2277406. Epub 2023 Dec 26.
4
Sparse Sliced Inverse Regression Via Lasso.基于套索法的稀疏切片逆回归
J Am Stat Assoc. 2019;114(528):1726-1739. doi: 10.1080/01621459.2018.1520115. Epub 2019 Mar 9.
5
Sufficient Forecasting Using Factor Models.使用因子模型进行充分预测。
J Econom. 2017 Dec;201(2):292-306. doi: 10.1016/j.jeconom.2017.08.009. Epub 2017 Aug 26.
6
An Adaptive Ridge Procedure for L0 Regularization.一种用于 L0 正则化的自适应岭回归方法。
PLoS One. 2016 Feb 5;11(2):e0148620. doi: 10.1371/journal.pone.0148620. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验