Reproductive Medicine Center, Sixth Affiliated Hospital, Sun Yat-Sen University, Shou Gou Ling Road, Guangzhou, 510000, China.
Guangdong Engineering Technology Research Center of Fertility Preservation, Guangzhou, 510000, China.
J Assist Reprod Genet. 2024 Aug;41(8):2173-2183. doi: 10.1007/s10815-024-03153-2. Epub 2024 May 31.
This study aimed to evaluate the effectiveness of a random forest (RF) model in predicting clinical pregnancy outcomes from intrauterine insemination (IUI) and identifying significant factors affecting IUI pregnancy in a large Chinese population.
RESULTS: A total of 11 variables, including eight from female (age, body mass index, duration of infertility, prior miscarriage, and spontaneous abortion), hormone levels (anti-Müllerian hormone, follicle-stimulating hormone, luteinizing hormone), and three from male (smoking, semen volume, and sperm concentration), were identified as the significant variables associated with IUI clinical pregnancy in our Chinese dataset. The RF-based prediction model presents an area under the receiver operating characteristic curve (AUC) of 0.716 (95% confidence interval, 0.6914-0.7406), an accuracy rate of 0.6081, a sensitivity rate of 0.7113, and a specificity rate of 0.505. Importance analysis indicated that semen volume was the most vital variable in predicting IUI clinical pregnancy.
The machine learning-based IUI clinical pregnancy prediction model showed a promising predictive efficacy that could provide a potent tool to guide selecting targeted infertile couples beneficial from IUI treatment, and also identify which parameters are most relevant in IUI clinical pregnancy.
本研究旨在评估随机森林(RF)模型在预测宫腔内人工授精(IUI)临床妊娠结局方面的有效性,并确定影响中国大样本人群 IUI 妊娠的重要因素。
结果:本研究共纳入 11 个变量,包括女性 8 个(年龄、体重指数、不孕持续时间、既往流产和自然流产)、激素水平(抗苗勒管激素、卵泡刺激素、黄体生成素)和男性 3 个(吸烟、精液量和精子浓度),这些变量与中国人群 IUI 临床妊娠有关。基于 RF 的预测模型的受试者工作特征曲线下面积(AUC)为 0.716(95%置信区间:0.6914-0.7406),准确率为 0.6081,敏感度为 0.7113,特异度为 0.505。重要性分析表明,精液量是预测 IUI 临床妊娠最重要的变量。
基于机器学习的 IUI 临床妊娠预测模型显示出良好的预测效果,可为指导选择可能从 IUI 治疗中获益的特定不孕夫妇提供有力工具,并确定与 IUI 临床妊娠最相关的参数。