Suppr超能文献

内部验证和比较预测模型以确定不孕治疗的成功率:对 2485 个周期的回顾性研究。

Internal validation and comparison of predictive models to determine success rate of infertility treatments: a retrospective study of 2485 cycles.

机构信息

Department of Computer Science, Faculty of Mathematics, Statistics and Computer Science, University of Sistan and Baluchestan, Zahedan, Iran.

Department of Medical Informatics, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2022 May 4;12(1):7216. doi: 10.1038/s41598-022-10902-9.

Abstract

Infertility is a significant health problem and assisted reproductive technologies to treat infertility. Despite all efforts, the success rate of these methods is still low. Also, each of these methods has side effects and costs. Therefore, accurate prediction of treatment success rate is a clinical challenge. This retrospective study aimed to internally validate and compare various machine learning models for predicting the clinical pregnancy rate (CPR) of infertility treatment. For this purpose, data from 1931 patients consisting of in vitro fertilization (IVF) or intra cytoplasmic sperm injection (ICSI) (733) and intra uterine insemination (IUI) (1196) treatments were included. Also, no egg or sperm donation data were used. The performance of machine learning algorithms to predict clinical pregnancy were expressed in terms of accuracy, recall, F-score, positive predictive value (PPV), brier score (BS), Matthew correlation coefficient (MCC), and receiver operating characteristic. The significance of the features with CPR and AUCs was evaluated by Student's t test and DeLong's algorithm. Random forest (RF) model had the highest accuracy in the IVF/ICSI treatment. The sensitivity, F1 score, PPV, and MCC of the RF model were 0.76, 0.73, 0.80, and 0.5, respectively. These values for IUI treatment were 0.84, 0.80, 0.82, and 0.34, respectively. The BS was 0.13 and 0.15 for IVF/ICS and IUI, respectively. In addition, the estimated AUCs of the RF model for IVF/ICS and IUI were 0.73 and 0.7, respectively. Some essential features were obtained based on RF ranking for the two datasets, including age, follicle stimulation hormone, endometrial thickness, and infertility duration. The results showed a strong relationship between clinical pregnancy and a woman's age. Also, endometrial thickness and the number of follicles decreased with increasing female age in both treatments.

摘要

不孕是一个严重的健康问题,辅助生殖技术被用于治疗不孕。尽管已经付出了诸多努力,但这些方法的成功率仍然较低。此外,这些方法中的每一种都有副作用和成本。因此,准确预测治疗成功率是一个临床挑战。本回顾性研究旨在内部验证和比较各种机器学习模型,以预测不孕治疗的临床妊娠率(CPR)。为此,纳入了 1931 名患者的数据,包括体外受精(IVF)或胞浆内精子注射(ICSI)(733 例)和宫腔内人工授精(IUI)(1196 例)治疗。此外,未使用捐卵或捐精数据。机器学习算法预测临床妊娠的性能用准确性、召回率、F 分数、阳性预测值(PPV)、Brier 得分(BS)、马修相关系数(MCC)和接收者操作特征来表示。通过学生 t 检验和 DeLong 算法评估了与 CPR 和 AUC 相关的特征的显著性。随机森林(RF)模型在 IVF/ICSI 治疗中具有最高的准确性。RF 模型的灵敏度、F1 分数、PPV 和 MCC 分别为 0.76、0.73、0.80 和 0.5。IUI 治疗的这些值分别为 0.84、0.80、0.82 和 0.34。BS 分别为 IVF/ICSI 和 IUI 的 0.13 和 0.15。此外,RF 模型对 IVF/ICSI 和 IUI 的估计 AUC 分别为 0.73 和 0.7。基于两个数据集的 RF 排名,获得了一些重要的特征,包括年龄、卵泡刺激激素、子宫内膜厚度和不孕持续时间。结果表明,临床妊娠与女性年龄之间存在很强的关系。此外,两种治疗方法中,随着女性年龄的增加,子宫内膜厚度和卵泡数量减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f69/9068696/2d29b5636b1d/41598_2022_10902_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验