Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
PLoS One. 2024 May 31;19(5):e0303931. doi: 10.1371/journal.pone.0303931. eCollection 2024.
Spray drying fruit juice powders poses challenges because sugars and organic acids with low molecular weight and a low glass transition temperature inherently cause stickiness. This study employed a hydrophobic polytetrafluoroethylene (PTFE) film to mimic the surface of the drying chamber wall. The Central Composite Design (CCD) using response surface methodology investigated the impact of power (X1, Watt) and the duration of oxygenated plasma treatment (X2, minutes) on substrate contact angle (°), reflecting surface hydrophobicity. To validate the approach, Morinda citrofolia (MC) juice, augmented with maltodextrins as drying agents, underwent spray drying on the improved PTFE-coated surface. The spray drying process for MC juice was performed at inlet air temperatures of 120, 140, and 160°C, along with Noni juice-to-maltodextrin solids ratios of 4.00, 1.00, and 0.25. The PTFE-coated borosilicate substrate, prepared at a radio frequency (RF) power of 90W for 15 minutes of treatment time, exhibited a porous and spongy microstructure, correlating with superior contact angle performance (171°) compared to untreated borosilicate glass. Optimization data indicated that the PTFE film attained an optimum contact angle of 146.0° with a specific combination of plasma RF operating power (X1 = 74 W) and treatment duration (X2 = 10.0 minutes). RAMAN spectroscopy indicated a structural analysis with an ID/IG ratio of 0.2, while Brunauer-Emmett-Teller (BET) surface area analysis suggested an average particle size of less than 100 nm for all coated films. The process significantly improved the powder's hygroscopicity, resistance to caking, and moisture content of maltodextrin-MC juice. Therefore, the discovery of this modification, which applies oxygen plasma treatment to PTFE-coated substrates, effectively enhances surface hydrophobicity, contact angle, porosity, roughness, and ultimately improves the efficacy and recovery of the spray drying process.
喷雾干燥果汁粉存在挑战,因为低分子量和低玻璃化转变温度的糖和有机酸会导致粘性。本研究采用疏水性聚四氟乙烯(PTFE)薄膜来模拟干燥室壁的表面。使用响应面法中的中心组合设计(CCD)研究了功率(X1,瓦特)和含氧等离子体处理时间(X2,分钟)对底物接触角(°)的影响,反映了表面疏水性。为了验证该方法,将添加麦芽糊精作为干燥剂的诺丽果汁和桑果汁进行了在改进的 PTFE 涂层表面上的喷雾干燥。在入口空气温度为 120、140 和 160°C 的条件下,以诺丽果汁与麦芽糊精固形物比为 4.00、1.00 和 0.25 的条件下,对 Morinda citrofolia(MC)果汁进行了喷雾干燥。在射频(RF)功率为 90W 并处理 15 分钟的条件下制备的 PTFE 涂覆硼硅酸盐基底,显示出多孔和海绵状的微观结构,与未处理的硼硅酸盐玻璃相比,具有更好的接触角性能(171°)。优化数据表明,PTFE 膜在等离子体 RF 操作功率(X1 = 74 W)和处理时间(X2 = 10.0 分钟)的特定组合下达到了最佳接触角 146.0°。拉曼光谱分析表明具有 0.2 的 ID/IG 比的结构分析,而 Brunauer-Emmett-Teller(BET)表面积分析表明所有涂覆膜的平均粒径均小于 100nm。该工艺显著改善了粉末的吸湿性、抗结块性和麦芽糊精-MC 果汁的水分含量。因此,发现这种改性方法,即对 PTFE 涂覆基底进行含氧等离子体处理,可有效提高表面疏水性、接触角、孔隙率、粗糙度,并最终提高喷雾干燥过程的效率和恢复。