文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

作者信息

Bagchi Arnab, Pramanik Payel, Sarkar Ram

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, West Bengal, India.

出版信息

Diagnostics (Basel). 2022 Dec 30;13(1):126. doi: 10.3390/diagnostics13010126.


DOI:10.3390/diagnostics13010126
PMID:36611418
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9818545/
Abstract

Breast cancer is one of the deadliest diseases worldwide among women. Early diagnosis and proper treatment can save many lives. Breast image analysis is a popular method for detecting breast cancer. Computer-aided diagnosis of breast images helps radiologists do the task more efficiently and appropriately. Histopathological image analysis is an important diagnostic method for breast cancer, which is basically microscopic imaging of breast tissue. In this work, we developed a deep learning-based method to classify breast cancer using histopathological images. We propose a patch-classification model to classify the image patches, where we divide the images into patches and pre-process these patches with stain normalization, regularization, and augmentation methods. We use machine-learning-based classifiers and ensembling methods to classify the image patches into four categories: normal, benign, in situ, and invasive. Next, we use the patch information from this model to classify the images into two classes (cancerous and non-cancerous) and four other classes (normal, benign, in situ, and invasive). We introduce a model to utilize the 2-class classification probabilities and classify the images into a 4-class classification. The proposed method yields promising results and achieves a classification accuracy of 97.50% for 4-class image classification and 98.6% for 2-class image classification on the ICIAR BACH dataset.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/a0d9a2e883f0/diagnostics-13-00126-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/1d81ab8822d8/diagnostics-13-00126-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/c9ffd826bb04/diagnostics-13-00126-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/a9c13fd4750c/diagnostics-13-00126-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/daaee0302e3f/diagnostics-13-00126-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/43d530275a30/diagnostics-13-00126-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/82611ba03951/diagnostics-13-00126-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/cd4597dcca02/diagnostics-13-00126-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/08ce621d4591/diagnostics-13-00126-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/8ea277f1a550/diagnostics-13-00126-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/cf539cb6361e/diagnostics-13-00126-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/c51791fa4133/diagnostics-13-00126-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/8aaf238a3801/diagnostics-13-00126-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/a0d9a2e883f0/diagnostics-13-00126-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/1d81ab8822d8/diagnostics-13-00126-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/c9ffd826bb04/diagnostics-13-00126-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/a9c13fd4750c/diagnostics-13-00126-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/daaee0302e3f/diagnostics-13-00126-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/43d530275a30/diagnostics-13-00126-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/82611ba03951/diagnostics-13-00126-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/cd4597dcca02/diagnostics-13-00126-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/08ce621d4591/diagnostics-13-00126-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/8ea277f1a550/diagnostics-13-00126-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/cf539cb6361e/diagnostics-13-00126-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/c51791fa4133/diagnostics-13-00126-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/8aaf238a3801/diagnostics-13-00126-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/9818545/a0d9a2e883f0/diagnostics-13-00126-g013.jpg

相似文献

[1]
A Multi-Stage Approach to Breast Cancer Classification Using Histopathology Images.

Diagnostics (Basel). 2022-12-30

[2]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[3]
Patch-based system for Classification of Breast Histology images using deep learning.

Comput Med Imaging Graph. 2018-12-1

[4]
Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images.

Cancer Manag Res. 2021-6-10

[5]
An end-to-end breast tumour classification model using context-based patch modelling - A BiLSTM approach for image classification.

Comput Med Imaging Graph. 2021-1

[6]
Conventional Machine Learning versus Deep Learning for Magnification Dependent Histopathological Breast Cancer Image Classification: A Comparative Study with Visual Explanation.

Diagnostics (Basel). 2021-3-16

[7]
Computer Aided Breast Cancer Detection Using Ensembling of Texture and Statistical Image Features.

Sensors (Basel). 2021-5-23

[8]
Multi-Classification of Breast Cancer Lesions in Histopathological Images Using DEEP_Pachi: Multiple Self-Attention Head.

Diagnostics (Basel). 2022-5-5

[9]
LiverNet: efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images.

Int J Comput Assist Radiol Surg. 2021-9

[10]
Classification of breast tumors by using a novel approach based on deep learning methods and feature selection.

Breast Cancer Res Treat. 2023-7

引用本文的文献

[1]
Instance-level semantic segmentation of nuclei based on multimodal structure encoding.

BMC Bioinformatics. 2025-2-6

[2]
A multi-patch-based deep learning model with VGG19 for breast cancer classifications in the pathology images.

Digit Health. 2025-1-17

[3]
Ensemble Deep Learning-Based Image Classification for Breast Cancer Subtype and Invasiveness Diagnosis from Whole Slide Image Histopathology.

Cancers (Basel). 2024-6-14

[4]
DAU-Net: Dual attention-aided U-Net for segmenting tumor in breast ultrasound images.

PLoS One. 2024

[5]
Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review.

J Pathol Inform. 2024-2-1

[6]
DBU-Net: Dual branch U-Net for tumor segmentation in breast ultrasound images.

PLoS One. 2023

[7]
A Modified LeNet CNN for Breast Cancer Diagnosis in Ultrasound Images.

Diagnostics (Basel). 2023-8-24

本文引用的文献

[1]
A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients.

Sci Rep. 2022-11-27

[2]
Deep feature selection using local search embedded social ski-driver optimization algorithm for breast cancer detection in mammograms.

Neural Comput Appl. 2023

[3]
MTRRE-Net: A deep learning model for detection of breast cancer from histopathological images.

Comput Biol Med. 2022-11

[4]
DRDA-Net: Dense residual dual-shuffle attention network for breast cancer classification using histopathological images.

Comput Biol Med. 2022-6

[5]
Computer Aided Breast Cancer Detection Using Ensembling of Texture and Statistical Image Features.

Sensors (Basel). 2021-5-23

[6]
Carcinoma Type Classification From High-Resolution Breast Microscopy Images Using a Hybrid Ensemble of Deep Convolutional Features and Gradient Boosting Trees Classifiers.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[7]
Optimized Radial Basis Neural Network for Classification of Breast Cancer Images.

Curr Med Imaging. 2021

[8]
A Review on Curability of Cancers: More Efforts for Novel Therapeutic Options Are Needed.

Cancers (Basel). 2019-11-13

[9]
Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images.

Eur J Cancer. 2019-7-18

[10]
BACH: Grand challenge on breast cancer histology images.

Med Image Anal. 2019-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索