Suppr超能文献

使用分割引导的集成分类框架进行创新性乳腺癌检测。

Innovative breast cancer detection using a segmentation-guided ensemble classification framework.

作者信息

Bala P Manju, Palani U

机构信息

Computer Science and Engineering, IFET College of Engineering, Villupuram, Tamilnadu India.

Electronics and Communication Engineering, IFET College of Engineering, Villupuram, Tamilnadu India.

出版信息

Biomed Eng Lett. 2024 Oct 18;15(1):179-191. doi: 10.1007/s13534-024-00435-7. eCollection 2025 Jan.

Abstract

UNLABELLED

Breast cancer (BC) remains a significant global health issue, necessitating innovative methodologies to improve early detection and diagnosis. Despite the existence of intelligent deep learning models, their efficacy is often limited due to the oversight of small-sized masses, leading to false positive and false negative outcomes. This research introduces a novel segmentation-guided classification model developed to increase BC detection accuracy. The designed model unfolds in two critical phases, each contributing to a comprehensive BC diagnostic pipeline. In Phase I, the Attention U-Net model is utilized for BC segmentation. The encoder extracts hierarchical features, while the decoder, supported by attention mechanisms, refines the segmentation, focusing on suspicious regions. In Phase II, a novel ensemble approach is introduced for BC classification, involving various feature extraction methods, base classifiers, and a meta-classifier. An ensemble of model classifiers-including support vector machine, decision trees, k-nearest neighbor and artificial neural network- captures diverse patterns within these features. The Random Forest meta-classifier amalgamates their outputs, leveraging their collective strengths. The proposed integrated model accurately identifies different breast tumor classes, including malignant, benign, and normal. The precise region-of-interest analysis from segmentation phase significantly boosted classification performance of ensemble meta-classifier. The model accomplished an overall accuracy rate of 99.57% with high segmentation performance of 95% f1-score, illustrating its high discriminative power in detecting malignant, benign, and normal cases within the ultrasound image dataset. This research contributes to reducing breast tumor morbidity and mortality by facilitating early detection and timely intervention, ultimately supporting better patient outcomes.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13534-024-00435-7.

摘要

未标注

乳腺癌(BC)仍然是一个重大的全球健康问题,需要创新方法来改善早期检测和诊断。尽管存在智能深度学习模型,但由于对小尺寸肿块的忽视,它们的功效往往受到限制,导致假阳性和假阴性结果。本研究引入了一种新的分割引导分类模型,旨在提高乳腺癌检测的准确性。所设计的模型分两个关键阶段展开,每个阶段都为全面的乳腺癌诊断流程做出贡献。在第一阶段,注意力U-Net模型用于乳腺癌分割。编码器提取层次特征,而在注意力机制支持下的解码器则细化分割,聚焦于可疑区域。在第二阶段,引入了一种新的集成方法用于乳腺癌分类,涉及各种特征提取方法、基分类器和一个元分类器。包括支持向量机、决策树、k近邻和人工神经网络在内的模型分类器集成捕捉这些特征中的不同模式。随机森林元分类器融合它们的输出,利用它们的集体优势。所提出的集成模型能够准确识别不同的乳腺肿瘤类别,包括恶性、良性和正常。分割阶段精确的感兴趣区域分析显著提高了集成元分类器的分类性能。该模型在超声图像数据集中检测恶性、良性和正常病例时具有很高的判别力,总体准确率达到99.57%,分割性能也很高,F1分数为95%。本研究通过促进早期检测和及时干预,有助于降低乳腺肿瘤的发病率和死亡率,最终支持更好的患者预后。

补充信息

在线版本包含可在10.1007/s13534-024-00435-7获取的补充材料。

相似文献

2
..
Int Ophthalmol. 2025 Jun 27;45(1):266. doi: 10.1007/s10792-025-03602-6.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验