Department of Biology, Collage of Science, University of Jeddah, Jeddah 21589, Saudi Arabia.
Department of Applied Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 23218, Saudi Arabia.
Int J Mol Sci. 2024 Oct 11;25(20):10954. doi: 10.3390/ijms252010954.
The exploitation of drought is a critical worldwide challenge that influences wheat growth and productivity. This study aimed to investigate a synergistic amendment strategy for drought using the single and combined application of plant growth-promoting microorganisms (PGPM) () and biogenic silica nanoparticles (SiONPs) from rice husk ash (RHA) on Saudi Arabia's Spring wheat Summit cultivar ( L.) for 102 DAS (days after sowing). The significant improvement was due to the application of 600 ppm SiONPs and + 600 ppm SiONPs, which enhanced the physiological properties of chlorophyll a, carotenoids, total pigments, osmolytes, and antioxidant contents of drought-stressed wheat plants as adaptive strategies. The results suggest that the expression of the studied genes (, , , , , and the wheat housekeeping gene ) in wheat remarkably enhanced wheat tolerance to drought stress. We discovered that the genes and metabolites involved significantly contributed to defense responses, making them potential targets for assessing drought tolerance levels. The drought tolerance indices of wheat were revealed by the mean productivity (MP), stress sensitivity index (SSI), yield stability index (YSI), and stress tolerance index (STI). We employed four databases, such as BAR, InterPro, phytozome, and the KEGG pathway, to predict and decipher the putative domains in prior gene sequencing. As a result, we discovered that these genes may be involved in a range of important biological functions in specific tissues at different developmental stages, including response to drought stress, proline accumulation, plant growth and development, and defense response. In conclusion, the sole and/or dual application to the wheat cultivar improved drought tolerance strength. These findings could be insightful data for wheat production in Saudi Arabia under various water regimes.
干旱的开发利用是一个全球性的重大挑战,它影响着小麦的生长和生产力。本研究旨在探讨一种协同的抗旱改良策略,即单独和联合应用植物促生微生物(PGPM)和生物硅纳米粒子(SiONPs),这些 SiONPs 来自稻壳灰(RHA),以沙特阿拉伯春小麦 Summit 品种( L.)为研究对象,研究时间为 102 天(播种后天数)。之所以取得显著的改善,是因为应用了 600ppm 的 SiONPs 和 + 600ppm 的 SiONPs,这增强了受干旱胁迫小麦植株的叶绿素 a、类胡萝卜素、总色素、渗透调节物质和抗氧化剂含量等生理特性,是一种适应策略。结果表明,研究基因( 、 、 、 、 和小麦管家基因)在小麦中的表达显著增强了小麦对干旱胁迫的耐受性。我们发现,参与防御反应的基因和代谢物有显著贡献,使它们成为评估干旱胁迫耐受性水平的潜在目标。通过平均生产力(MP)、胁迫敏感指数(SSI)、产量稳定性指数(YSI)和胁迫耐受指数(STI)揭示了小麦的耐旱性指数。我们使用了四个数据库,如 BAR、InterPro、phytozome 和 KEGG 途径,对之前基因测序的潜在基因序列进行预测和解读。结果发现,这些基因可能参与了一系列重要的生物学功能,包括对干旱胁迫的反应、脯氨酸积累、植物生长发育和防御反应等,这些功能在不同的组织和不同的发育阶段都有体现。总之,单独和/或联合应用于小麦品种可提高其抗旱能力。这些发现可为沙特阿拉伯在不同水分条件下的小麦生产提供有价值的参考数据。