Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany.
Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.
Glob Chang Biol. 2024 Jun;30(6):e17349. doi: 10.1111/gcb.17349.
Priming of soil organic matter (SOM) decomposition by microorganisms is a key phenomenon of global carbon (C) cycling. Soil pH is a main factor defining priming effects (PEs) because it (i) controls microbial community composition and activities, including enzyme activities, (ii) defines SOM stabilization and destabilization mechanisms, and (iii) regulates intensities of many biogeochemical processes. In this critical review, we focus on prerequisites and mechanisms of PE depending on pH and assess the global change consequences for PE. The highest PEs were common in soils with pH between 5.5 and 7.5, whereas low molecular weight organic compounds triggered PE mainly in slightly acidic soils. Positive PEs up to 20 times of SOM decomposition before C input were common at pH around 6.5. Negative PEs were common at soil pH below 4.5 or above 7 reflecting a suboptimal environment for microorganisms and specific SOM stabilization mechanisms at low and high pH. Short-term soil acidification (in rhizosphere, after fertilizer application) affects PE by: mineral-SOM complexation, SOM oxidation by iron reduction, enzymatic depolymerization, and pH-dependent changes in nutrient availability. Biological processes of microbial metabolism shift over the short-term, whereas long-term microbial community adaptations to slow acidification are common. The nitrogen fertilization induced soil acidification and land use intensification strongly decrease pH and thus boost the PE. Concluding, soil pH is one of the strongest but up to now disregarded factors of PE, defining SOM decomposition through short-term metabolic adaptation of microbial groups and long-term shift of microbial communities.
土壤有机质(SOM)分解的微生物激发是全球碳(C)循环的关键现象。土壤 pH 值是定义激发效应(PE)的主要因素,因为它 (i) 控制微生物群落组成和活性,包括酶活性,(ii) 定义 SOM 的稳定和不稳定机制,以及 (iii) 调节许多生物地球化学过程的强度。在这篇评论中,我们重点关注 pH 值依赖的激发效应的先决条件和机制,并评估激发效应的全球变化后果。在 pH 值为 5.5 到 7.5 之间的土壤中,激发效应最高,而在略微酸性土壤中,低分子量有机化合物主要引发激发效应。在输入 C 之前,pH 值约为 6.5 时,激发效应高达 SOM 分解的 20 倍。在土壤 pH 值低于 4.5 或高于 7 时,激发效应为负,这反映了微生物的环境不佳和在低 pH 值和高 pH 值下 SOM 的特定稳定机制。短期土壤酸化(在根际、施肥后)通过以下方式影响激发效应:矿物-SOM 络合、铁还原导致的 SOM 氧化、酶解聚和 pH 依赖性养分可用性变化。微生物代谢的生物学过程在短期内发生变化,而微生物群落对缓慢酸化的长期适应则很常见。氮施肥引起的土壤酸化和土地利用集约化强烈降低 pH 值,从而促进激发效应。总之,土壤 pH 值是激发效应的最强但迄今为止被忽视的因素之一,通过微生物群体的短期代谢适应和微生物群落的长期转变来定义 SOM 分解。