Shrestha Snehi, Barvenik Kieran James, Chen Tianle, Yang Haochen, Li Yang, Kesavan Meera Muthachi, Little Joshua M, Whitley Hayden C, Teng Zi, Luo Yaguang, Tubaldi Eleonora, Chen Po-Yen
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
Nat Commun. 2024 Jun 1;15(1):4685. doi: 10.1038/s41467-024-49011-8.
Designing ultralight conductive aerogels with tailored electrical and mechanical properties is critical for various applications. Conventional approaches rely on iterative, time-consuming experiments across a vast parameter space. Herein, an integrated workflow is developed to combine collaborative robotics with machine learning to accelerate the design of conductive aerogels with programmable properties. An automated pipetting robot is operated to prepare 264 mixtures of TiCT MXene, cellulose, gelatin, and glutaraldehyde at different ratios/loadings. After freeze-drying, the aerogels' structural integrity is evaluated to train a support vector machine classifier. Through 8 active learning cycles with data augmentation, 162 unique conductive aerogels are fabricated/characterized via robotics-automated platforms, enabling the construction of an artificial neural network prediction model. The prediction model conducts two-way design tasks: (1) predicting the aerogels' physicochemical properties from fabrication parameters and (2) automating the inverse design of aerogels for specific property requirements. The combined use of model interpretation and finite element simulations validates a pronounced correlation between aerogel density and compressive strength. The model-suggested aerogels with high conductivity, customized strength, and pressure insensitivity allow for compression-stable Joule heating for wearable thermal management.
设计具有定制电学和力学性能的超轻导电气凝胶对于各种应用至关重要。传统方法依赖于在广阔参数空间中进行反复、耗时的实验。在此,开发了一种集成工作流程,将协作机器人技术与机器学习相结合,以加速具有可编程性能的导电气凝胶的设计。操作自动移液机器人以制备264种不同比例/负载的TiCT MXene、纤维素、明胶和戊二醛混合物。冷冻干燥后,评估气凝胶的结构完整性以训练支持向量机分类器。通过8个带有数据增强的主动学习循环,通过机器人自动化平台制造/表征了162种独特的导电气凝胶,从而构建了人工神经网络预测模型。该预测模型执行双向设计任务:(1) 根据制造参数预测气凝胶的物理化学性质,(2) 针对特定性能要求自动进行气凝胶的逆向设计。模型解释和有限元模拟的结合使用验证了气凝胶密度与抗压强度之间的显著相关性。模型建议的具有高导电性、定制强度和压力不敏感性的气凝胶可实现用于可穿戴热管理的压缩稳定焦耳加热。