文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用三维多孔壳聚糖微球嵌入脂肪来源的干细胞来促进神经再生。

Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration.

机构信息

Department of Ultrasound, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.

Beijing Key Lab of Regenerative Medicine in Orthopaedics, Chinese PLA General Hospital, Beijing, China.

出版信息

Stem Cell Res Ther. 2024 Jun 1;15(1):158. doi: 10.1186/s13287-024-03753-w.


DOI:10.1186/s13287-024-03753-w
PMID:38824568
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11144330/
Abstract

BACKGROUND: Nerve guide conduits are a promising strategy for reconstructing peripheral nerve defects. Improving the survival rate of seed cells in nerve conduits is still a challenge and microcarriers are an excellent three-dimensional (3D) culture scaffold. Here, we investigate the effect of the 3D culture of microcarriers on the biological characteristics of adipose mesenchymal stem cells (ADSCs) and to evaluate the efficacy of chitosan nerve conduits filled with microcarriers loaded with ADSCs in repairing nerve defects. METHODS: In vitro, we prepared porous chitosan microspheres by a modified emulsion cross-linking method for loading ADSCs and evaluated the growth status and function of ADSCs. In vivo, ADSCs-loaded microcarriers were injected into chitosan nerve conduits to repair a 12 mm sciatic nerve defect in rats. RESULTS: Compared to the conventional two-dimensional (2D) culture, the prepared microcarriers were more conducive to the proliferation, migration, and secretion of trophic factors of ADSCs. In addition, gait analysis, neuro-electrophysiology, and histological evaluation of nerves and muscles showed that the ADSC microcarrier-loaded nerve conduits were more effective in improving nerve regeneration. CONCLUSIONS: The ADSCs-loaded chitosan porous microcarrier prepared in this study has a high cell engraftment rate and good potential for peripheral nerve repair.

摘要

背景:神经导管是修复周围神经缺损的一种很有前途的策略。提高神经导管中种子细胞的存活率仍然是一个挑战,而微载体是一种极好的三维(3D)培养支架。在这里,我们研究了 3D 培养微载体对脂肪间充质干细胞(ADSCs)的生物学特性的影响,并评估了填充负载 ADSCs 的微载体的壳聚糖神经导管在修复神经缺损方面的效果。 方法:在体外,我们通过改良的乳液交联法制备了用于负载 ADSCs 的多孔壳聚糖微球,并评估了 ADSCs 的生长状态和功能。在体内,将负载 ADSCs 的微载体注入壳聚糖神经导管中,以修复大鼠 12mm 坐骨神经缺损。 结果:与传统的二维(2D)培养相比,所制备的微载体更有利于 ADSCs 的增殖、迁移和营养因子的分泌。此外,步态分析、神经电生理学和神经肌肉组织学评估表明,负载 ADSC 的微载体神经导管在改善神经再生方面更有效。 结论:本研究制备的负载 ADSCs 的壳聚糖多孔微载体具有较高的细胞植入率,对周围神经修复具有良好的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/93685f597abd/13287_2024_3753_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/fbf9cb924f6a/13287_2024_3753_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/b7b6373d80cd/13287_2024_3753_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/5c92bf97aa5a/13287_2024_3753_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/84aa6ac10951/13287_2024_3753_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/bb8ecdb6385e/13287_2024_3753_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/3f1f981f63b6/13287_2024_3753_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/5ab002c05c48/13287_2024_3753_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/adb989df276d/13287_2024_3753_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/2070edcb254e/13287_2024_3753_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/93685f597abd/13287_2024_3753_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/fbf9cb924f6a/13287_2024_3753_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/b7b6373d80cd/13287_2024_3753_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/5c92bf97aa5a/13287_2024_3753_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/84aa6ac10951/13287_2024_3753_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/bb8ecdb6385e/13287_2024_3753_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/3f1f981f63b6/13287_2024_3753_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/5ab002c05c48/13287_2024_3753_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/adb989df276d/13287_2024_3753_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/2070edcb254e/13287_2024_3753_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f7/11144330/93685f597abd/13287_2024_3753_Fig10_HTML.jpg

相似文献

[1]
Harnessing three-dimensional porous chitosan microsphere embedded with adipose-derived stem cells to promote nerve regeneration.

Stem Cell Res Ther. 2024-6-1

[2]
Biological characteristics of tissue engineered-nerve grafts enhancing peripheral nerve regeneration.

Stem Cell Res Ther. 2024-7-18

[3]
Efficacy of using adipose-derived stem cells and PRP on regeneration of 40 -mm long sciatic nerve defect bridged by polyglycolic-polypropylene mesh in canine model.

Stem Cell Res Ther. 2024-7-18

[4]
Conical Chitosan Conduits Combined With Methylcobalamin for Sciatic Nerve Transposition Repair.

J Integr Neurosci. 2025-6-24

[5]
Coaxial Bioprinting of Schwann Cells and Neural Stem Cells in a Three-Dimensional Microenvironment for the Repair of Peripheral Nerve Defects.

J Biomed Mater Res A. 2025-7

[6]
3D collagen nanofiber scaffold with adipose derived stem cells for functional adipose tissue regeneration.

Sci Rep. 2025-7-1

[7]
An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration.

J Biomed Mater Res B Appl Biomater. 2024-12

[8]
Analysis of the Regeneration Ability of Adipose-Derived Schwann Cells for Sciatic Nerve Defects.

Ann Plast Surg. 2025-7-1

[9]
Cell Imprint-Mediated Differentiation of Adipose-Derived Stem Cells Into Keratinocytes Enhances Wound Healing on Collagen-Based Scaffolds: An Ovine Model Study.

Wound Repair Regen. 2025

[10]
3D-printed nano-hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds with adipose-derived mesenchymal stem cells enhance bone regeneration in rat model of bone defects.

J Biomater Appl. 2025-4-3

引用本文的文献

[1]
Peripheral Nerve Regeneration Reimagined: Cutting-Edge Biomaterials and Biotechnological Innovations.

Bioengineering (Basel). 2025-8-11

[2]
Harnessing nanotechnology for stem-cell therapies: revolutionizing neurodegenerative disorder treatments - a state-of-the-art update.

Front Pharmacol. 2025-7-23

[3]
Advances in mesenchymal stem cells and their derivatives for promoting peripheral nerve regeneration.

Burns Trauma. 2025-5-19

[4]
Research progress on composite nerve guidance conduits with immune-regulatory functions.

Front Immunol. 2025-6-10

[5]
Injectable Methylcellulose/Hyaluronic Acid/Collagen Hydrogel Loaded With Adipose-Derived Stem Cells Alleviates Skin Photoaging via Inhibition of HIF-1α: An in Vitro and in Vivo Study.

Skin Res Technol. 2025-6

[6]
Bottom-up Biomaterial strategies for creating tailored stem cells in regenerative medicine.

Front Bioeng Biotechnol. 2025-5-20

[7]
The Application of Stem Cells and Exosomes in Promoting Nerve Conduits for Peripheral Nerve Repair.

Biomater Res. 2025-4-14

[8]
Potentially commercializable nerve guidance conduits for peripheral nerve injury: Past, present, and future.

Mater Today Bio. 2025-2-5

[9]
The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves.

Neurol Int. 2025-2-6

[10]
Advances in biomaterial-based tissue engineering for peripheral nerve injury repair.

Bioact Mater. 2024-12-13

本文引用的文献

[1]
Cell-directed assembly of luminal nanofibril fillers in nerve conduits for peripheral nerve repair.

Biomaterials. 2023-10

[2]
Spheroids of adipose derived stem cells show their potential in differentiating towards the angiogenic lineage.

Gene. 2023-8-20

[3]
Bridging Gaps in Peripheral Nerves: From Current Strategies to Future Perspectives in Conduit Design.

Int J Mol Sci. 2023-5-24

[4]
Matrilin-2 within a three-dimensional lysine-modified chitosan porous scaffold enhances Schwann cell migration and axonal outgrowth for peripheral nerve regeneration.

Front Bioeng Biotechnol. 2023-5-4

[5]
An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity.

Adv Sci (Weinh). 2023-7

[6]
Biomanufacturing Recombinantly Expressed Cripto-1 Protein in Anchorage-Dependent Mammalian Cells Growing in Suspension Bioreactors within a Three-Dimensional Hydrogel Microcarrier.

Gels. 2023-3-18

[7]
Magnetic Microcarriers with Accurate Localization and Proliferation of Mesenchymal Stem Cell for Cartilage Defects Repairing.

ACS Nano. 2023-4-11

[8]
Experimental Study on Repairing Peripheral Nerve Defects with Novel Bionic Tissue Engineering.

Adv Healthc Mater. 2023-7

[9]
Schwann cell functions in peripheral nerve development and repair.

Neurobiol Dis. 2023-1

[10]
The success of biomaterial-based tissue engineering strategies for peripheral nerve regeneration.

Front Bioeng Biotechnol. 2022-10-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索