Suppr超能文献

PFMNet:基于原型的特征映射网络,用于医学图像分割中的少样本领域自适应。

PFMNet: Prototype-based feature mapping network for few-shot domain adaptation in medical image segmentation.

机构信息

Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China.

Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China.

出版信息

Comput Med Imaging Graph. 2024 Sep;116:102406. doi: 10.1016/j.compmedimag.2024.102406. Epub 2024 May 28.

Abstract

Lack of data is one of the biggest hurdles for rare disease research using deep learning. Due to the lack of rare-disease images and annotations, training a robust network for automatic rare-disease image segmentation is very challenging. To address this challenge, few-shot domain adaptation (FSDA) has emerged as a practical research direction, aiming to leverage a limited number of annotated images from a target domain to facilitate adaptation of models trained on other large datasets in a source domain. In this paper, we present a novel prototype-based feature mapping network (PFMNet) designed for FSDA in medical image segmentation. PFMNet adopts an encoder-decoder structure for segmentation, with the prototype-based feature mapping (PFM) module positioned at the bottom of the encoder-decoder structure. The PFM module transforms high-level features from the target domain into the source domain-like features that are more easily comprehensible by the decoder. By leveraging these source domain-like features, the decoder can effectively perform few-shot segmentation in the target domain and generate accurate segmentation masks. We evaluate the performance of PFMNet through experiments on three typical yet challenging few-shot medical image segmentation tasks: cross-center optic disc/cup segmentation, cross-center polyp segmentation, and cross-modality cardiac structure segmentation. We consider four different settings: 5-shot, 10-shot, 15-shot, and 20-shot. The experimental results substantiate the efficacy of our proposed approach for few-shot domain adaptation in medical image segmentation.

摘要

缺乏数据是使用深度学习进行罕见病研究的最大障碍之一。由于罕见病图像和注释的缺乏,训练用于自动罕见病图像分割的强大网络极具挑战性。为了应对这一挑战,少样本领域自适应(FSDA)已成为一个实用的研究方向,旨在利用目标域中有限数量的带注释图像,促进在源域中训练的模型在其他大型数据集上的适应。在本文中,我们提出了一种用于医学图像分割的 FSDA 的基于原型的特征映射网络(PFMNet)。PFMNet 采用用于分割的编码器-解码器结构,原型的特征映射(PFM)模块位于编码器-解码器结构的底部。PFM 模块将来自目标域的高层特征转换为更易于解码器理解的源域样特征。通过利用这些源域样特征,解码器可以有效地在目标域中进行少样本分割,并生成准确的分割掩模。我们通过在三个典型但具有挑战性的少样本医学图像分割任务上的实验来评估 PFMNet 的性能:跨中心视盘/杯分割、跨中心息肉分割和跨模态心脏结构分割。我们考虑了四种不同的设置:5 样本、10 样本、15 样本和 20 样本。实验结果证实了我们提出的用于医学图像分割的 FSDA 的方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验