Suppr超能文献

基于注意力感知网络的自动监督预训练在视盘和杯分割中的应用。

Self-supervised pre-training for joint optic disc and cup segmentation via attention-aware network.

机构信息

Institute for Advanced Study, Nanchang University, Nanchang, 330031, China.

Institute of Science and Technology, Waseda University, Tokyo, 63-8001, Japan.

出版信息

BMC Ophthalmol. 2024 Mar 4;24(1):98. doi: 10.1186/s12886-024-03376-y.

Abstract

Image segmentation is a fundamental task in deep learning, which is able to analyse the essence of the images for further development. However, for the supervised learning segmentation method, collecting pixel-level labels is very time-consuming and labour-intensive. In the medical image processing area for optic disc and cup segmentation, we consider there are two challenging problems that remain unsolved. One is how to design an efficient network to capture the global field of the medical image and execute fast in real applications. The other is how to train the deep segmentation network using a few training data due to some medical privacy issues. In this paper, to conquer such issues, we first design a novel attention-aware segmentation model equipped with the multi-scale attention module in the pyramid structure-like encoder-decoder network, which can efficiently learn the global semantics and the long-range dependencies of the input images. Furthermore, we also inject the prior knowledge that the optic cup lies inside the optic disc by a novel loss function. Then, we propose a self-supervised contrastive learning method for optic disc and cup segmentation. The unsupervised feature representation is learned by matching an encoded query to a dictionary of encoded keys using a contrastive technique. Finetuning the pre-trained model using the proposed loss function can help achieve good performance for the task. To validate the effectiveness of the proposed method, extensive systemic evaluations on different public challenging optic disc and cup benchmarks, including DRISHTI-GS and REFUGE datasets demonstrate the superiority of the proposed method, which can achieve new state-of-the-art performance approaching 0.9801 and 0.9087 F1 score respectively while gaining 0.9657 and 0.8976 . The code will be made publicly available.

摘要

图像分割是深度学习的基本任务,它能够分析图像的本质,为进一步发展提供支持。然而,对于监督学习分割方法,收集像素级标签是非常耗时和费力的。在医学图像处理领域的视盘和杯分割中,我们认为存在两个尚未解决的挑战性问题。一个是如何设计一个有效的网络来捕捉医学图像的全局领域,并在实际应用中快速执行。另一个是如何在由于一些医学隐私问题而只有少量训练数据的情况下训练深度分割网络。在本文中,为了解决这些问题,我们首先设计了一种新颖的注意感知分割模型,该模型在金字塔结构的编码器-解码器网络中配备了多尺度注意模块,能够有效地学习输入图像的全局语义和长程依赖关系。此外,我们还通过一种新颖的损失函数,注入了视杯位于视盘内部的先验知识。然后,我们提出了一种用于视盘和杯分割的自监督对比学习方法。通过对比技术,使用编码查询匹配编码键字典,学习无监督特征表示。使用所提出的损失函数对预训练模型进行微调,可以帮助模型在任务中取得良好的性能。为了验证所提出方法的有效性,我们在不同的具有挑战性的公共视盘和杯基准上进行了广泛的系统评估,包括 DRISHTI-GS 和 REFUGE 数据集,结果表明,所提出的方法具有优越性,在分别接近 0.9801 和 0.9087 的 F1 分数的同时,获得了 0.9657 和 0.8976 的 AUC 分数。代码将公开发布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f48/10910696/d080b729bb4c/12886_2024_3376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验