Morales Félix L, Xu Feihong, Lee Hyojun Ada, Tejedor Navarro Helio, Bechel Meagan A, Cameron Eryn L, Kelso Jesse, Weiss Curtis H, Nunes Amaral Luís A
medRxiv. 2025 Mar 1:2024.05.21.24307715. doi: 10.1101/2024.05.21.24307715.
Physicians, particularly intensivists, face information overload and decision fatigue, underscoring the need for automated diagnostic tools. Acute Respiratory Distress Syndrome (ARDS) affects over 10% of critical care patients, with over 40% mortality rate, yet is only recognized in 30-70% of cases in clinical settings. We present a reproducible computational pipeline that automates ARDS adjudication in retrospective datasets of mechanically ventilated adults, implementing the Berlin Definition via natural language processing and classification algorithms. We used labeled chest imaging reports from two hospitals to train an XGBoost model to detect bilateral infiltrates, and a labeled subset of attending physician notes from one hospital to train another XGBoost model to detect a pneumonia diagnosis. Both models achieve high discriminative performance on test sets-an area under the receiver operating characteristic curve (AUROC) of 0.88 for adjudicating bilateral infiltrates on chest imaging reports, and an AUROC of 0.87 for detecting pneumonia on attending physician notes. We integrated these models with rule-based components and validated the entire pipeline on a subset of healthcare encounters from a third hospital (MIMIC-III). We find a sensitivity of 93.5% in adjudicating ARDS - far surpassing the 22.6% ARDS documentation rate we found for this cohort - along with a false positive rate of 17.4%. We conclude that our reproducible, automated pipeline holds promise for improving ARDS recognition and could aid clinical practice through real-time EHR integration.
医生,尤其是重症监护医生,面临着信息过载和决策疲劳,这凸显了对自动化诊断工具的需求。急性呼吸窘迫综合征(ARDS)影响超过10%的重症监护患者,死亡率超过40%,但在临床环境中只有30%-70%的病例能被识别出来。我们提出了一种可重复的计算流程,该流程可在机械通气成人的回顾性数据集中自动判定ARDS,通过自然语言处理和分类算法实施柏林定义。我们使用来自两家医院的标记胸部影像报告来训练一个XGBoost模型以检测双侧浸润,并使用来自一家医院的主治医生记录的标记子集来训练另一个XGBoost模型以检测肺炎诊断。这两个模型在测试集上均具有很高的判别性能——在胸部影像报告中判定双侧浸润的受试者工作特征曲线下面积(AUROC)为0.88,在主治医生记录中检测肺炎的AUROC为0.87。我们将这些模型与基于规则的组件集成,并在来自第三家医院(MIMIC-III)的一部分医疗记录上验证了整个流程。我们发现判定ARDS的灵敏度为93.5%——远远超过我们在该队列中发现的22.6%的ARDS记录率——假阳性率为17.4%。我们得出结论,我们可重复的自动化流程有望改善ARDS的识别,并可通过实时电子健康记录集成辅助临床实践。