Morales Félix L, Xu Feihong, Lee Hyojun Ada, Tejedor Navarro Helio, Bechel Meagan A, Cameron Eryn L, Kelso Jesse, Weiss Curtis H, Nunes Amaral Luís A
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL, USA.
Nat Commun. 2025 Jul 23;16(1):6787. doi: 10.1038/s41467-025-61418-5.
Physicians in critical care settings face information overload and decision fatigue, contributing to under-recognition of acute respiratory distress syndrome, which affects over 10% of intensive care patients and carries over 40% mortality rate. We present a reproducible computational pipeline to automatically identify this condition retrospectively in mechanically ventilated adults. This computational pipeline operationalizes the Berlin Definition by detecting bilateral infiltrates from radiology reports and a pneumonia diagnosis from attending physician notes, using interpretable classifiers trained on labeled data. Here we show that our integrated pipeline achieves high performance-93.5% sensitivity and 17.4% false positive rate-when applied to a held-out and publicly-available dataset from an external hospital. This substantially exceeds the 22.6% documentation rate observed in the same cohort. These results demonstrate that our automated adjudication pipeline can accurately identify an under-diagnosed condition in critical care and may support timely recognition and intervention through integration with electronic health records.
重症监护环境中的医生面临信息过载和决策疲劳,这导致对急性呼吸窘迫综合征的认识不足,该综合征影响超过10%的重症监护患者,死亡率超过40%。我们提出了一种可重复的计算流程,用于在接受机械通气的成年患者中自动回顾性识别这种病症。该计算流程通过从放射学报告中检测双侧浸润以及从主治医生记录中诊断肺炎来实施柏林定义,使用在标记数据上训练的可解释分类器。在此我们表明,当应用于来自外部医院的一个留出的公开可用数据集时,我们的集成流程实现了高性能——93.5%的灵敏度和17.4%的假阳性率。这大大超过了在同一队列中观察到的22.6%的记录率。这些结果表明,我们的自动判定流程可以准确识别重症监护中一种诊断不足的病症,并可能通过与电子健康记录集成来支持及时识别和干预。