Zhang Yuhui, Wang Lili, Bian Qing, Zhong Chengcheng, Chen Yupeng, Jiang Lei
University of Chinese Academy of Sciences, Beijing, 100049, China.
University of Science and Technology of China, Hefei, 230026, China.
Small. 2024 Oct;20(40):e2311379. doi: 10.1002/smll.202311379. Epub 2024 Jun 3.
2D semiconductor heterostructures exhibit broad application prospects. However, regular nanochannels of heterostructures rarely caught the researcher's attention. Herein, a metal-organic framework (i.e., Cu(HHTP)) and transition metal dichalcogenides (i.e., MoS)-based multilayer van der Waals heterostructure (i.e., Cu(HHTP)/MoS) realized band alignment-dominated light-driven ion transport and further light-enhanced ionic energy generation. High-density channels of the heterostructure provide high-speed pathways for ion transmembrane transport. Upon light illumination, a net ionic flow occurs at a symmetric concentration, suggesting a directional cationic transport from Cu(HHTP) to MoS. This is because Cu(HHTP)/MoS heterostructures containing type-II band alignment can generate photovoltaic motive force through light-induced efficient charge separation to drive ion transport. After introducing into the ionic power generation system, the maximum power density under illumination can achieve notable improvement under different concentration differences. In addition to the photovoltaic motive force, type-II band alignment and material defect capture-induced surface charge increase also raise ion selectivity and flux, greatly facilitating ionic energy generation. This work demonstrates that 2D semiconductor heterostructures with rational band alignment can not only be a potential platform for optimizing light-enhanced ionic energy harvesting but also provide a new thought for biomimetic iontronic devices.
二维半导体异质结构展现出广阔的应用前景。然而,异质结构的规则纳米通道很少引起研究人员的关注。在此,一种基于金属有机框架(即Cu(HHTP))和过渡金属二硫属化物(即MoS)的多层范德华异质结构(即Cu(HHTP)/MoS)实现了能带排列主导的光驱动离子传输以及进一步的光增强离子能量产生。异质结构的高密度通道为离子跨膜运输提供了高速通道。光照时,在对称浓度下会出现净离子流,表明阳离子从Cu(HHTP)向MoS的定向传输。这是因为具有II型能带排列的Cu(HHTP)/MoS异质结构可通过光诱导的高效电荷分离产生光伏驱动力来驱动离子传输。引入离子发电系统后,在不同浓度差下光照下的最大功率密度可实现显著提高。除了光伏驱动力外,II型能带排列和材料缺陷捕获引起的表面电荷增加还提高了离子选择性和通量,极大地促进了离子能量产生。这项工作表明,具有合理能带排列的二维半导体异质结构不仅可以成为优化光增强离子能量收集的潜在平台,还为仿生离子电子器件提供了新的思路。