Suppr超能文献

通过MoS/WS异质双层中原子级薄的单个纳米孔的光驱动离子和分子传输。

Light-Driven Ionic and Molecular Transport through Atomically Thin Single Nanopores in MoS/WS Heterobilayers.

作者信息

Yuan Zhishan, Liang Zhuohua, Yang Liusi, Zhou Daming, He Zihua, Yang Junyu, Wang Chengyong, Jiang Lei, Guo Wei

机构信息

School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China.

Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China.

出版信息

ACS Nano. 2024 Sep 3;18(35):24581-24590. doi: 10.1021/acsnano.4c09555. Epub 2024 Aug 13.

Abstract

Nanofluidic ionic and molecular transport through atomically thin nanopore membranes attracts broad research interest from both scientific and industrial communities for environmental, healthcare, and energy-related technologies. To mimic the biological ion pumping functions, recently, light-induced and quantum effect-facilitated charge separation in heterogeneous 2D-material assemblies is proposed as the fourth type of driving force to achieve active and noninvasive transport of ionic species through synthetic membrane materials. However, to date, engineering versatile van der Waals heterostructures into 2D nanopore membranes remains largely unexplored. Herein, we fabricate single nanopores in heterobilayer transition metal dichalcogenide membranes with helium ion beam irradiation and demonstrate the light-driven ionic transport and molecular translocation phenomena through the atomically thin nanopores. Experimental and simulation results further elucidate the driving mechanism as the photoinduced near-pore electric potential difference due to type II band alignment of the semiconducting WS and MoS monolayers. The strength of the photoinduced localized electric field near the pore region can be approximately 1.5 times stronger than that of its counterpart under the conventional voltage-driven mode. Consequently, the light-driven mode offers better spatial resolution for single-molecule detection. Light-driven ionic and molecular transport through nanopores in van der Waals heterojunction membranes anticipates transformative working principles for next-generation biomolecular sequencing and gives rise to fascinating opportunities for light-to-chemical energy harvesting nanosystems.

摘要

通过原子级薄的纳米孔膜进行的纳米流体离子和分子传输,因其与环境、医疗保健及能源相关技术相关,吸引了科学界和工业界的广泛研究兴趣。为了模拟生物离子泵功能,最近,有人提出在异质二维材料组件中利用光诱导和量子效应促进电荷分离,作为实现离子物种通过合成膜材料进行主动和非侵入性传输的第四种驱动力。然而,迄今为止,将通用的范德华异质结构工程化到二维纳米孔膜中在很大程度上仍未得到探索。在此,我们用氦离子束辐照在异质双层过渡金属二硫属化物膜中制造了单个纳米孔,并展示了通过原子级薄的纳米孔进行的光驱动离子传输和分子易位现象。实验和模拟结果进一步阐明了驱动机制,即由于半导体WS和MoS单层的II型能带排列导致的光致近孔电势差。孔区域附近光致局域电场的强度可比传统电压驱动模式下的电场强度大约强1.5倍。因此,光驱动模式为单分子检测提供了更好的空间分辨率。通过范德华异质结膜中的纳米孔进行光驱动离子和分子传输,有望为下一代生物分子测序带来变革性的工作原理,并为光到化学能收集纳米系统带来引人入胜的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验