Suppr超能文献

潜在生长因子作为远端结局的预测指标。

Latent growth factors as predictors of distal outcomes.

作者信息

McCormick Ethan M, Curran Patrick J, Hancock Gregory R

机构信息

Methodology and Statistics Department, Institute of Psychology, Leiden University.

Department of Psychology and Neuroscience, University of North Carolina.

出版信息

Psychol Methods. 2024 Jun 3. doi: 10.1037/met0000642.

Abstract

A currently overlooked application of the latent curve model (LCM) is its use in assessing the consequences of development patterns of change-that is as a predictor of distal outcomes. However, there are additional complications for appropriately specifying and interpreting the distal outcome LCM. Here, we develop a general framework for understanding the sensitivity of the distal outcome LCM to the choice of time coding, focusing on the regressions of the distal outcome on the latent growth factors. Using artificial and real-data examples, we highlight the unexpected changes in the regression of the slope factor which stand in contrast to prior work on time coding effects, and develop a framework for estimating the distal outcome LCM at a point in the trajectory-known as the aperture-which maximizes the interpretability of the effects. We also outline a prioritization approach developed for assessing incremental validity to obtain consistently interpretable estimates of the effect of the slope. Throughout, we emphasize practical steps for understanding these changing predictive effects, including graphical approaches for assessing regions of significance similar to those used to probe interaction effects. We conclude by providing recommendations for applied research using these models and outline an agenda for future work in this area. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

潜在曲线模型(LCM)目前一个被忽视的应用是其在评估变化发展模式的后果方面的用途——即作为远端结果的预测指标。然而,在恰当地设定和解释远端结果LCM方面还存在其他复杂情况。在此,我们构建了一个通用框架,以理解远端结果LCM对时间编码选择的敏感性,重点关注远端结果对潜在增长因子的回归。通过人工数据和真实数据示例,我们突出了斜率因子回归中出人意料的变化,这与先前关于时间编码效应的研究形成对比,并开发了一个在轨迹中的某一点(称为孔径)估计远端结果LCM的框架,该框架能使效应的可解释性最大化。我们还概述了一种为评估增量效度而开发的优先排序方法,以获得对斜率效应的一致可解释估计。自始至终,我们强调理解这些不断变化的预测效应的实际步骤,包括用于评估显著性区域的图形方法,类似于用于探究交互效应的方法。我们通过为使用这些模型的应用研究提供建议来得出结论,并概述该领域未来工作的议程。(《心理学文摘数据库记录》(c)2024美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验