Suppr超能文献

基于模型的增量效度。

Model-based incremental validity.

作者信息

Feng Yi, Hancock Gregory R

机构信息

Department of Human Development and Quantitative Methodology.

出版信息

Psychol Methods. 2022 Dec;27(6):1039-1060. doi: 10.1037/met0000342. Epub 2021 Dec 20.

Abstract

As an important facet of construct validity, incremental validity has been the focus of many applied investigations across a wide array of disciplines. Unfortunately, traditional methodological approaches for studying incremental validity, typically rooted in multiple regression, have many limitations that can hinder such assessments. In the current work, a strategy based in structural equation modeling is offered that greatly expands researchers' ability to investigate incremental validity of multiple individual predictors or blocks of predictors all within a single structural model. Models for four different research scenarios are presented, where the predictors of focal interest are: (a) individual measured predictors, (b) individual latent predictors, (c) blocks of measured predictors, and (d) blocks of latent predictors. Technical details of model specifications and model constraints are provided, and flexible extensions to other interesting questions (e.g., comparisons across populations) are discussed. Two empirical examples are included to illustrate the application of the proposed methods in different applied settings; complete plus and R syntax for both illustrative examples is supplied. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

作为结构效度的一个重要方面,增量效度一直是众多学科领域中许多应用研究的重点。不幸的是,传统的研究增量效度的方法通常基于多元回归,存在许多局限性,可能会阻碍此类评估。在当前的工作中,我们提出了一种基于结构方程模型的策略,该策略极大地扩展了研究人员在单个结构模型中研究多个个体预测变量或预测变量组的增量效度的能力。我们给出了四种不同研究场景的模型,其中重点关注的预测变量分别为:(a) 个体测量预测变量,(b) 个体潜在预测变量,(c) 测量预测变量组,以及 (d) 潜在预测变量组。我们提供了模型规格和模型约束的技术细节,并讨论了对其他有趣问题(例如,不同人群之间的比较)的灵活扩展。文中包含两个实证例子来说明所提出方法在不同应用场景中的应用;同时提供了两个说明性例子的完整R代码。(PsycInfo数据库记录 (c) 2023美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验