School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
Int J Biol Macromol. 2024 Jun;272(Pt 1):132736. doi: 10.1016/j.ijbiomac.2024.132736. Epub 2024 Jun 1.
Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 μm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.
在外科手术管理中,致命性大出血和糖尿病伤口愈合是世界性的挑战,无法控制的出血、慢性炎症和受损的重塑严重阻碍了整个愈合过程。考虑到止血、炎症和伤口微环境协同影响愈合进展,我们设计了一种具有协同伤口微环境调节作用的全合一β-葡聚糖(BG)杂化水凝胶,该水凝胶由纳米片层状硅酸盐增强,具有可调组织粘附性、耐血管爆裂压力和协同伤口微环境调节作用,用于动脉止血和糖尿病伤口愈合。这些水凝胶具有蜂窝状多孔微观结构,平均孔径为 7-19μm,组织粘附强度为 18-46kPa,血管爆裂压力为 58-174mmHg,可在大鼠肝和股动脉模型中实现优异的止血效果。它们可以通过 BG 和一氧化氮(NO)的协同作用有效清除活性氧,将巨噬细胞从促炎 M1 转化为促愈合 M2,并缩短炎症持续时间。单独使用 NO 释放 BG 杂化水凝胶可在 14 天内完全闭合糖尿病伤口,促进上皮化和真皮生长,并恢复正常的血管化,实现具有最佳胶原沉积和毛囊再生的高性能愈合。因此,这项工作为设计用于大出血止血剂和糖尿病伤口敷料的全合一多糖水凝胶开辟了新途径。