Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, Massachusetts, United States of America.
Section of Computational Biomedicine, School of Medicine, Boston University, Boston, Massachusetts, United States of America.
PLoS One. 2024 Jun 4;19(6):e0298501. doi: 10.1371/journal.pone.0298501. eCollection 2024.
Quantitative trait loci (QTL) denote regions of DNA whose variation is associated with variations in quantitative traits. QTL discovery is a powerful approach to understand how changes in molecular and clinical phenotypes may be related to DNA sequence changes. However, QTL discovery analysis encompasses multiple analytical steps and the processing of multiple input files, which can be laborious, error prone, and hard to reproduce if performed manually. To facilitate and automate large-scale QTL analysis, we developed the yQTL Pipeline, where the 'y' indicates the dependent quantitative variable being modeled. Prior to the association test, the pipeline supports the calculation or the direct input of pre-defined genome-wide principal components and genetic relationship matrix when applicable. User-specified covariates can also be provided. Depending on whether familial relatedness exists among the subjects, genome-wide association tests will be performed using either a linear mixed-effect model or a linear model. The options to run an ANOVA model or testing the interaction with a covariate are also available. Using the workflow management tool Nextflow, the pipeline parallelizes the analysis steps to optimize run-time and ensure results reproducibility. In addition, a user-friendly R Shiny App is developed to facilitate result visualization. It can generate Manhattan and Miami plots of phenotype traits, genotype-phenotype boxplots, and trait-QTL connection networks. We applied the yQTL Pipeline to analyze metabolomics profiles of blood serum from the New England Centenarians Study (NECS) participants. A total of 9.1M SNPs and 1,052 metabolites across 194 participants were analyzed. Using a p-value cutoff 5e-8, we found 14,983 mQTLs associated with 312 metabolites. The built-in parallelization of our pipeline reduced the run time from ~90 min to ~26 min. Visualization using the R Shiny App revealed multiple mQTLs shared across multiple metabolites. The yQTL Pipeline is available with documentation on GitHub at https://github.com/montilab/yQTLpipeline.
数量性状基因座 (QTL) 表示 DNA 的区域,其变异与数量性状的变异相关。QTL 发现是一种了解分子和临床表型的变化如何与 DNA 序列变化相关的强大方法。然而,QTL 发现分析包括多个分析步骤和多个输入文件的处理,如果手动执行,这可能是繁琐、容易出错且难以重现的。为了促进和自动化大规模 QTL 分析,我们开发了 yQTL 管道,其中 'y' 表示正在建模的依赖于数量的变量。在关联测试之前,该管道支持在适用时计算或直接输入全基因组主成分和遗传关系矩阵。也可以提供用户指定的协变量。根据研究对象之间是否存在亲缘关系,将使用线性混合效应模型或线性模型对全基因组关联测试进行分析。还可以选择运行 ANOVA 模型或测试与协变量的交互作用。使用工作流管理工具 Nextflow,该管道并行化分析步骤以优化运行时间并确保结果的可重复性。此外,还开发了一个用户友好的 R Shiny 应用程序,以方便结果可视化。它可以生成表型性状的曼哈顿和迈阿密图、基因型-表型箱线图和性状-QTL 连接网络图。我们将 yQTL 管道应用于分析来自新英格兰百岁老人研究 (NECS) 参与者的血清代谢组学图谱。在 194 名参与者中,共分析了 910 万个 SNP 和 1052 种代谢物。使用 p 值截止值 5e-8,我们发现了 14983 个与 312 种代谢物相关的 mQTL。我们的管道内置的并行化将运行时间从90 分钟减少到26 分钟。使用 R Shiny App 进行可视化显示了多个 mQTL 跨越多个代谢物共享。yQTL 管道可在 GitHub 上获得文档,网址为 https://github.com/montilab/yQTLpipeline。