Suppr超能文献

使用光电容积脉搏波描记法和深度学习预测心血管疾病风险。

Predicting cardiovascular disease risk using photoplethysmography and deep learning.

作者信息

Weng Wei-Hung, Baur Sebastien, Daswani Mayank, Chen Christina, Harrell Lauren, Kakarmath Sujay, Jabara Mariam, Behsaz Babak, McLean Cory Y, Matias Yossi, Corrado Greg S, Shetty Shravya, Prabhakara Shruthi, Liu Yun, Danaei Goodarz, Ardila Diego

机构信息

Google LLC, Mountain View, California, United States of America.

Department of Global Health and Population, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America.

出版信息

PLOS Glob Public Health. 2024 Jun 4;4(6):e0003204. doi: 10.1371/journal.pgph.0003204. eCollection 2024.

Abstract

Cardiovascular diseases (CVDs) are responsible for a large proportion of premature deaths in low- and middle-income countries. Early CVD detection and intervention is critical in these populations, yet many existing CVD risk scores require a physical examination or lab measurements, which can be challenging in such health systems due to limited accessibility. We investigated the potential to use photoplethysmography (PPG), a sensing technology available on most smartphones that can potentially enable large-scale screening at low cost, for CVD risk prediction. We developed a deep learning PPG-based CVD risk score (DLS) to predict the probability of having major adverse cardiovascular events (MACE: non-fatal myocardial infarction, stroke, and cardiovascular death) within ten years, given only age, sex, smoking status and PPG as predictors. We compare the DLS with the office-based refit-WHO score, which adopts the shared predictors from WHO and Globorisk scores (age, sex, smoking status, height, weight and systolic blood pressure) but refitted on the UK Biobank (UKB) cohort. All models were trained on a development dataset (141,509 participants) and evaluated on a geographically separate test (54,856 participants) dataset, both from UKB. DLS's C-statistic (71.1%, 95% CI 69.9-72.4) is non-inferior to office-based refit-WHO score (70.9%, 95% CI 69.7-72.2; non-inferiority margin of 2.5%, p<0.01) in the test dataset. The calibration of the DLS is satisfactory, with a 1.8% mean absolute calibration error. Adding DLS features to the office-based score increases the C-statistic by 1.0% (95% CI 0.6-1.4). DLS predicts ten-year MACE risk comparable with the office-based refit-WHO score. Interpretability analyses suggest that the DLS-extracted features are related to PPG waveform morphology and are independent of heart rate. Our study provides a proof-of-concept and suggests the potential of a PPG-based approach strategies for community-based primary prevention in resource-limited regions.

摘要

心血管疾病(CVDs)在低收入和中等收入国家导致了很大比例的过早死亡。在这些人群中,早期检测和干预心血管疾病至关重要,然而许多现有的心血管疾病风险评分需要进行体格检查或实验室测量,在这样的卫生系统中,由于可及性有限,这可能具有挑战性。我们研究了使用光电容积脉搏波描记法(PPG)进行心血管疾病风险预测的潜力,PPG是一种大多数智能手机都具备的传感技术,有可能实现低成本的大规模筛查。我们开发了一种基于深度学习的基于PPG的心血管疾病风险评分(DLS),仅以年龄、性别、吸烟状况和PPG作为预测指标,来预测十年内发生主要不良心血管事件(MACE:非致命性心肌梗死、中风和心血管死亡)的概率。我们将DLS与基于办公室的重新拟合WHO评分进行比较,后者采用了WHO评分和全球风险评分的共同预测指标(年龄、性别、吸烟状况、身高、体重和收缩压),但在英国生物银行(UKB)队列上进行了重新拟合。所有模型均在一个开发数据集(141,509名参与者)上进行训练,并在一个地理上独立的测试(54,856名参与者)数据集上进行评估,两个数据集均来自UKB。在测试数据集中,DLS的C统计量(71.1%,95%置信区间69.9 - 72.4)不劣于基于办公室的重新拟合WHO评分(70.9%,95%置信区间69.7 - 72.2;非劣效性边际为2.5%,p<0.01)。DLS的校准令人满意,平均绝对校准误差为1.8%。将DLS特征添加到基于办公室的评分中可使C统计量提高1.0%(95%置信区间0.6 - 1.4)。DLS预测的十年MACE风险与基于办公室的重新拟合WHO评分相当。可解释性分析表明,DLS提取的特征与PPG波形形态相关,且与心率无关。我们的研究提供了一个概念验证,并表明基于PPG的方法在资源有限地区进行社区初级预防的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891f/11149850/be03f5b00525/pgph.0003204.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验