Centre for Medical Image Computing, University College London, London, UK; Department of Respiratory Medicine, University College London, London, UK.
MANAS AI, London, UK.
Comput Med Imaging Graph. 2024 Sep;116:102399. doi: 10.1016/j.compmedimag.2024.102399. Epub 2024 May 20.
Lung cancer screening (LCS) using annual computed tomography (CT) scanning significantly reduces mortality by detecting cancerous lung nodules at an earlier stage. Deep learning algorithms can improve nodule malignancy risk stratification. However, they have typically been used to analyse single time point CT data when detecting malignant nodules on either baseline or incident CT LCS rounds. Deep learning algorithms have the greatest value in two aspects. These approaches have great potential in assessing nodule change across time-series CT scans where subtle changes may be challenging to identify using the human eye alone. Moreover, they could be targeted to detect nodules developing on incident screening rounds, where cancers are generally smaller and more challenging to detect confidently. Here, we show the performance of our Deep learning-based Computer-Aided Diagnosis model integrating Nodule and Lung imaging data with clinical Metadata Longitudinally (DeepCAD-NLM-L) for malignancy prediction. DeepCAD-NLM-L showed improved performance (AUC = 88%) against models utilizing single time-point data alone. DeepCAD-NLM-L also demonstrated comparable and complementary performance to radiologists when interpreting the most challenging nodules typically found in LCS programs. It also demonstrated similar performance to radiologists when assessed on out-of-distribution imaging dataset. The results emphasize the advantages of using time-series and multimodal analyses when interpreting malignancy risk in LCS.
肺癌筛查(LCS)使用年度计算机断层扫描(CT)扫描通过更早地检测癌性肺结节显著降低死亡率。深度学习算法可以改善结节恶性风险分层。然而,它们通常用于在基线或偶发性 CT LCS 扫描中检测恶性结节时分析单个时间点 CT 数据。深度学习算法在两个方面具有最大的价值。这些方法在评估时间序列 CT 扫描中的结节变化方面具有很大的潜力,在这种情况下,仅用肉眼可能难以识别细微的变化。此外,它们可以针对偶发性筛查轮次中出现的结节进行检测,这些结节通常更小,更难以自信地检测。在这里,我们展示了我们的基于深度学习的计算机辅助诊断模型的性能,该模型整合了带有临床元数据的结节和肺部成像数据进行纵向分析(DeepCAD-NLM-L),用于恶性预测。与仅使用单个时间点数据的模型相比,DeepCAD-NLM-L 显示出了改进的性能(AUC=88%)。DeepCAD-NLM-L 在解释 LCS 计划中通常发现的最具挑战性的结节时,与放射科医生的表现相当且具有互补性。当在离群成像数据集上进行评估时,它也表现出与放射科医生相似的性能。这些结果强调了在解释 LCS 中的恶性风险时使用时间序列和多模态分析的优势。