School of Data Science, Fudan University, Shanghai, 200433, China.
Institute for Big Data, Fudan University, Shanghai, 200433, China.
Sci Data. 2024 Jun 4;11(1):580. doi: 10.1038/s41597-024-03411-z.
With the rapid proliferation of climate policies in both number and scope, there is an increasing demand for a global-level dataset that provides multi-indicator information on policy elements and their implementation contexts. To address this need, we developed the Global Climate Change Mitigation Policy Dataset (GCCMPD) using a semisupervised hybrid machine learning approach, drawing upon policy information from global, regional, and sector-specific sources. Differing from existing climate policy datasets, the GCCMPD covers a large range of policies, amounting to 73,625 policies of 216 entities. Through the integration of expert knowledge-based dictionary mapping, probability statistics methods, and advanced natural language processing technology, the GCCMPD offers detailed classification of multiple indicators and consistent information on sectoral policy instruments. This includes insights into objectives, target sectors, instruments, legal compulsion, administrative entities, etc. By aligning with the sector classification of the Intergovernmental Panel on Climate Change (IPCC) emission datasets, the GCCMPD serves to help policy-makers, researchers, and social organizations gain a deeper understanding of the similarities and distinctions among climate activities across countries, sectors, and entities.
随着气候政策在数量和范围上的迅速扩张,人们对于能够提供关于政策要素及其实施背景的多指标信息的全球层面数据集的需求日益增长。为了满足这一需求,我们采用半监督混合机器学习方法开发了全球气候变化减缓政策数据集(GCCMPD),该数据集利用了来自全球、区域和部门特定来源的政策信息。与现有的气候政策数据集不同,GCCMPD 涵盖了广泛的政策范围,总计包含 216 个实体的 73625 项政策。通过整合基于专家知识的字典映射、概率统计方法以及先进的自然语言处理技术,GCCMPD 为多个指标提供了详细的分类,并提供了关于部门政策工具的一致信息。这包括对目标、目标部门、工具、法律强制力、行政实体等方面的深入了解。通过与政府间气候变化专门委员会(IPCC)排放数据集的部门分类保持一致,GCCMPD 有助于政策制定者、研究人员和社会组织更深入地了解各国、各部门和各实体之间气候活动的相似性和区别。