Li Bo, Fu Enxian, Yang Shuhao, Lin Jiaying, Zhang Wei, Zhang Jian, Lu Yaling, Wang Jiantong, Jiang Hongqiang
Chinese Academy of Environmental Planning, State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Beijing, 100043, China.
Harvard University, Harvard Kennedy School, Cambridge, 02138, USA.
Sci Data. 2025 Jan 31;12(1):188. doi: 10.1038/s41597-025-04476-0.
Efforts on climate change have demonstrated tangible impacts through various actions and policies. However, a significant knowledge gap remains: comparing the stringency of climate change policies over time or across jurisdictions is challenging due to ambiguous definitions, the lack of a unified assessment framework, complex causal effects, and the difficulty in achieving effective measurement. Furthermore, China's climate governance is expected to address multiple objectives by integrating main effects and side effects, to achieve synergies that encompass environmental, economic, and social impacts. This paper employs an integrated framework comprising lexicon, text analysis, machine learning, and large-language model applied to multi-source data to quantify China's policy stringency on climate change (PSCC) from 1954 to 2022. To achieve effective, robust, and explainable measurement, Chain-of-Thought and SHAP analysis are integrated into the framework. By framing the PSCC on varied sub-dimensions covering mitigation, adaptation, implementation, and spatial difference, this dataset maps the government's varied stringency on climate change and can be used as a robust variable to support a series of downstream causal analysis.
通过各种行动和政策,应对气候变化的努力已展现出切实成效。然而,仍存在重大的知识空白:由于定义模糊、缺乏统一的评估框架、因果效应复杂以及难以实现有效衡量,比较不同时期或不同司法管辖区的气候变化政策的严格程度具有挑战性。此外,中国的气候治理需要通过整合主要影响和副作用来实现多个目标,以达成涵盖环境、经济和社会影响的协同效应。本文采用了一个综合框架,该框架包括词汇、文本分析、机器学习和应用于多源数据的大语言模型,以量化1954年至2022年中国气候变化政策的严格程度(PSCC)。为了实现有效、稳健且可解释的衡量,思维链和SHAP分析被整合到该框架中。通过在涵盖减缓、适应、实施和空间差异的不同子维度上构建PSCC,该数据集描绘了政府在气候变化方面不同的严格程度,并且可以用作一个有力的变量来支持一系列下游因果分析。