Suppr超能文献

靶向蛋白质组学确定的多生物标志物特征开发的分类器用于预测晚期宫颈癌的预后和免疫治疗反应。

Targeted proteomics-determined multi-biomarker profiles developed classifier for prognosis and immunotherapy responses of advanced cervical cancer.

机构信息

NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China.

出版信息

Front Immunol. 2024 May 21;15:1391524. doi: 10.3389/fimmu.2024.1391524. eCollection 2024.

Abstract

BACKGROUND

Cervical cancer (CC) poses a global health challenge, with a particularly poor prognosis in cases of recurrence, metastasis, or advanced stages. A single biomarker is inadequate to predict CC prognosis or identify CC patients likely to benefit from immunotherapy, presumably owing to tumor complexity and heterogeneity.

METHODS

Using advanced Olink proteomics, we analyzed 92 oncology-related proteins in plasma from CC patients receiving immunotherapy, based upon the comparison of protein expression levels of pre-therapy with those of therapy-Cycle 6 in the partial response (PR) group and progressive disease (PD) group, respectively.

RESULTS

55 proteins were identified to exhibit differential expression trends across pre-therapy and post-therapy in both PR and PD groups. Enriched GO terms and KEGG pathways were associated with vital oncological and immunological processes. A logistic regression model, using 5 proteins (ITGB5, TGF-α, TLR3, WIF-1, and ERBB3) with highest AUC values, demonstrated good predictive performance for prognosis of CC patients undergoing immunotherapy and showed potential across different cancer types. The effectiveness of these proteins in prognosis prediction was further validated using TCGA-CESC datasets. A negative correlation and previously unidentified roles of WIF-1 in CC immunotherapy was also first determined.

CONCLUSION

Our findings reveal multi-biomarker profiles effectively predicting CC prognosis and identifying patients benefitting most from immunotherapy, especially for those with limited treatment options and traditionally poor prognosis, paving the way for personalized immunotherapeutic treatments and improved clinical strategies.

摘要

背景

宫颈癌(CC)是一个全球性的健康挑战,尤其是在复发、转移或晚期病例中,预后较差。单一生物标志物不足以预测 CC 的预后,也无法识别可能从免疫治疗中获益的 CC 患者,这可能是由于肿瘤的复杂性和异质性。

方法

我们使用先进的 Olink 蛋白质组学,分析了 92 种与肿瘤学相关的蛋白质在接受免疫治疗的 CC 患者的血浆中的表达水平,分别比较了治疗前和治疗 6 个周期时部分缓解(PR)组和进展性疾病(PD)组的蛋白表达水平。

结果

在 PR 和 PD 组中,有 55 种蛋白质被鉴定为在治疗前后表现出不同的表达趋势。富集的 GO 术语和 KEGG 通路与重要的肿瘤学和免疫学过程相关。使用具有最高 AUC 值的 5 种蛋白质(ITGB5、TGF-α、TLR3、WIF-1 和 ERBB3)构建的逻辑回归模型,对接受免疫治疗的 CC 患者的预后具有良好的预测性能,并显示出在不同癌症类型中的潜在应用价值。我们还使用 TCGA-CEC 数据集进一步验证了这些蛋白质在预后预测中的有效性。此外,我们首次确定了 WIF-1 在 CC 免疫治疗中的负相关作用和先前未被识别的作用。

结论

我们的研究结果揭示了多生物标志物谱可有效预测 CC 的预后,并识别最能从免疫治疗中获益的患者,尤其是那些治疗选择有限且传统预后较差的患者,为个性化免疫治疗和改善临床策略铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e67/11148239/e73406437794/fimmu-15-1391524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验