Ye Jun
Department of Statistics, University of Akron, Akron, OH, USA.
J Appl Stat. 2023 Apr 5;51(7):1287-1317. doi: 10.1080/02664763.2023.2197587. eCollection 2024.
The area of functional principal component analysis (FPCA) has seen relatively few contributions from the Bayesian inference. A Bayesian method in FPCA is developed under the cases of continuous and binary observations for sparse and irregularly spaced data. In the proposed Markov chain Monte Carlo (MCMC) method, Gibbs sampler approach is adopted to update the different variables based on their conditional posterior distributions. In FPCA, a set of eigenfunctions is suggested under Stiefel manifold, and samples are drawn from a Langevin-Bingham matrix variate distribution. Penalized splines are used to model mean trajectory and eigenfunction trajectories in generalized functional mixed models; and the proposed model is casted into a mixed-effects model framework for Bayesian inference. To determine the number of principal components, reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm is implemented. Four different simulation settings are conducted to demonstrate competitive performance against non-Bayesian approaches in FPCA. Finally, the proposed method is illustrated to the analysis of body mass index (BMI) data by gender and ethnicity.
功能主成分分析(FPCA)领域中,贝叶斯推断的贡献相对较少。本文针对稀疏且不规则间隔的数据,在连续观测和二元观测的情况下,开发了一种FPCA中的贝叶斯方法。在所提出的马尔可夫链蒙特卡罗(MCMC)方法中,采用吉布斯采样器方法根据不同变量的条件后验分布来更新这些变量。在FPCA中,在斯蒂费尔流形下提出了一组特征函数,并从朗之万 - 宾厄姆矩阵变量分布中抽取样本。在广义功能混合模型中,使用惩罚样条对均值轨迹和特征函数轨迹进行建模;并将所提出的模型转化为用于贝叶斯推断的混合效应模型框架。为了确定主成分的数量,实施了可逆跳跃马尔可夫链蒙特卡罗(RJ - MCMC)算法。进行了四种不同的模拟设置,以展示在FPCA中相对于非贝叶斯方法的竞争性能。最后,将所提出的方法应用于按性别和种族对体重指数(BMI)数据的分析。