Department of Biostatistics, University of California, Los Angeles, CA, USA.
Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA.
Biostatistics. 2022 Apr 13;23(2):558-573. doi: 10.1093/biostatistics/kxaa041.
Multi-dimensional functional data arises in numerous modern scientific experimental and observational studies. In this article, we focus on longitudinal functional data, a structured form of multidimensional functional data. Operating within a longitudinal functional framework we aim to capture low dimensional interpretable features. We propose a computationally efficient nonparametric Bayesian method to simultaneously smooth observed data, estimate conditional functional means and functional covariance surfaces. Statistical inference is based on Monte Carlo samples from the posterior measure through adaptive blocked Gibbs sampling. Several operative characteristics associated with the proposed modeling framework are assessed comparatively in a simulated environment. We illustrate the application of our work in two case studies. The first case study involves age-specific fertility collected over time for various countries. The second case study is an implicit learning experiment in children with autism spectrum disorder.
多维功能数据在许多现代科学实验和观测研究中出现。在本文中,我们专注于纵向功能数据,这是多维功能数据的一种结构化形式。在纵向功能框架内,我们旨在捕捉低维可解释特征。我们提出了一种计算效率高的非参数贝叶斯方法,可同时平滑观测数据、估计条件功能均值和功能协方差曲面。统计推断基于从后验测度中通过自适应块 Gibbs 抽样的蒙特卡罗样本。在模拟环境中比较评估了与所提出的建模框架相关的几个操作特性。我们通过两个案例研究来说明我们工作的应用。第一个案例研究涉及不同国家随时间收集的特定年龄段的生育率。第二个案例研究是自闭症谱系障碍儿童的内隐学习实验。