Suppr超能文献

解析肺腺癌演变:整合单细胞基因组学鉴定与肺进展相关的预后特征。

Deciphering lung adenocarcinoma evolution: Integrative single-cell genomics identifies the prognostic lung progression associated signature.

机构信息

Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

J Cell Mol Med. 2024 Jun;28(11):e18408. doi: 10.1111/jcmm.18408.

Abstract

We employed single-cell analysis techniques, specifically the inferCNV method, to dissect the complex progression of lung adenocarcinoma (LUAD) from adenocarcinoma in situ (AIS) through minimally invasive adenocarcinoma (MIA) to invasive adenocarcinoma (IAC). This approach enabled the identification of Cluster 6, which was significantly associated with LUAD progression. Our comprehensive analysis included intercellular interaction, transcription factor regulatory networks, trajectory analysis, and gene set variation analysis (GSVA), leading to the development of the lung progression associated signature (LPAS). Interestingly, we discovered that the LPAS not only accurately predicts the prognosis of LUAD patients but also forecasts genomic alterations, distinguishes between 'cold' and 'hot' tumours, and identifies potential candidates suitable for immunotherapy. PSMB1, identified within Cluster 6, was experimentally shown to significantly enhance cancer cell invasion and migration, highlighting the clinical relevance of LPAS in predicting LUAD progression and providing a potential target for therapeutic intervention. Our findings suggest that LPAS offers a novel biomarker for LUAD patient stratification, with significant implications for improving prognostic accuracy and guiding treatment decisions.

摘要

我们采用单细胞分析技术,特别是 inferCNV 方法,从原位腺癌 (AIS) 经微浸润性腺癌 (MIA) 到浸润性腺癌 (IAC) ,解析肺腺癌 (LUAD) 的复杂进展。这种方法能够识别出与 LUAD 进展显著相关的 Cluster 6。我们的综合分析包括细胞间相互作用、转录因子调控网络、轨迹分析和基因集变异分析 (GSVA),从而开发出与肺进展相关的特征 (LPAS)。有趣的是,我们发现 LPAS 不仅能准确预测 LUAD 患者的预后,还能预测基因组改变,区分“冷”和“热”肿瘤,并识别出适合免疫治疗的潜在候选者。在 Cluster 6 中鉴定出的 PSMB1 实验表明可显著增强癌细胞的侵袭和迁移,突出了 LPAS 在预测 LUAD 进展中的临床相关性,并为治疗干预提供了一个潜在的靶点。我们的研究结果表明,LPAS 为 LUAD 患者分层提供了一种新的生物标志物,对提高预后准确性和指导治疗决策具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a361/11149493/879ee156698f/JCMM-28-e18408-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验