Suppr超能文献

通过人工智能驱动的干性相关基因特征解读肺腺癌的预后和免疫治疗反应。

Deciphering lung adenocarcinoma prognosis and immunotherapy response through an AI-driven stemness-related gene signature.

作者信息

Ye Bicheng, Hongting Ge, Zhuang Wen, Chen Cheng, Yi Shulin, Tang Xinyan, Jiang Aimin, Zhong Yating

机构信息

School of Clinical Medicine, Yangzhou Polytechnic College, Yangzhou, China.

Department of Respiratory and Critical Care Medicine, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huai'an, China.

出版信息

J Cell Mol Med. 2024 Jul;28(14):e18564. doi: 10.1111/jcmm.18564.

Abstract

Lung adenocarcinoma (LUAD) is a leading cause of cancer-related deaths, and improving prognostic accuracy is vital for personalised treatment approaches, especially in the context of immunotherapy. In this study, we constructed an artificial intelligence (AI)-driven stemness-related gene signature (SRS) that deciphered LUAD prognosis and immunotherapy response. CytoTRACE analysis of single-cell RNA sequencing data identified genes associated with stemness in LUAD epithelial cells. An AI network integrating traditional regression, machine learning, and deep learning algorithms constructed the SRS based on genes associated with stemness. Subsequently, we conducted a comprehensive exploration of the connection between SRS and both intrinsic and extrinsic immune environments using multi-omics data. Experimental validation through siRNA knockdown in LUAD cell lines, followed by assessments of proliferation, migration, and invasion, confirmed the functional role of CKS1B, a top SRS gene. The SRS demonstrated high precision in predicting LUAD prognosis and likelihood of benefiting from immunotherapy. High-risk groups classified by the SRS exhibited decreased immunogenicity and reduced immune cell infiltration, indicating challenges for immunotherapy. Conversely, in vitro experiments revealed CKS1B knockdown significantly impaired aggressive cancer phenotypes like proliferation, migration, and invasion of LUAD cells, highlighting its pivotal role. These results underscore a close association between stemness and tumour immunity, offering predictive insights into the immune landscape and immunotherapy responses in LUAD. The newly established SRS holds promise as a valuable tool for selecting LUAD populations likely to benefit from future clinical stratification efforts.

摘要

肺腺癌(LUAD)是癌症相关死亡的主要原因,提高预后准确性对于个性化治疗方法至关重要,尤其是在免疫治疗背景下。在本研究中,我们构建了一种人工智能(AI)驱动的干性相关基因特征(SRS),用于解读LUAD的预后和免疫治疗反应。对单细胞RNA测序数据进行的CytoTRACE分析确定了LUAD上皮细胞中与干性相关的基因。一个整合了传统回归、机器学习和深度学习算法的AI网络基于与干性相关的基因构建了SRS。随后,我们使用多组学数据全面探索了SRS与内在和外在免疫环境之间的联系。通过在LUAD细胞系中进行siRNA敲低实验验证,随后评估增殖、迁移和侵袭,证实了顶级SRS基因CKS1B的功能作用。SRS在预测LUAD预后和从免疫治疗中获益的可能性方面表现出高精度。由SRS分类的高危组表现出免疫原性降低和免疫细胞浸润减少,这表明免疫治疗面临挑战。相反,体外实验表明,敲低CKS1B会显著损害LUAD细胞的增殖、迁移和侵袭等侵袭性癌症表型,突出了其关键作用。这些结果强调了干性与肿瘤免疫之间的密切关联,为LUAD的免疫格局和免疫治疗反应提供了预测性见解。新建立的SRS有望成为选择可能从未来临床分层努力中获益的LUAD人群的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2206/11268368/537b469377f9/JCMM-28-e18564-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验