Suppr超能文献

基于左旋葡聚糖酮的单体的数字光处理3D打印:利用硫醇-烯化学制备生物基聚合物树脂

DLP 3D Printing of Levoglucosenone-Based Monomers: Exploiting Thiol-ene Chemistry for Bio-Based Polymeric Resins.

作者信息

Pezzana Lorenzo, Fadlallah Sami, Giri German, Archimbaud Corentin, Roppolo Ignazio, Allais Florent, Sangermano Marco

机构信息

Dipartimento Scienza e Tecnologia dei Materiali (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

URD Agro-Biotechnologies Industrielles (ABI), AgroParisTech, 3 rue des Rouges Terres, 51110, Pomacle, France.

出版信息

ChemSusChem. 2024 Nov 25;17(22):e202301828. doi: 10.1002/cssc.202301828. Epub 2024 Aug 2.

Abstract

Additive manufacturing (AM) is a well-established technique that allows for the development of complex geometries and structures with multiple applications. While considered a more environmentally-friendly method than traditional manufacturing, a significant challenge lies in the availability and ease of synthesis of bio-based alternative resins. In our endeavor to valorize biomass, this work proposes the synthesis of new α,ω-dienes derived from cellulose-derived levoglucosenone (LGO). These dienes are not only straightforward to synthesize but also offer a tunable synthesis approach. Specifically, LGO is first converted into diol precursor, which is subsequently esterified using various carboxylic acids (in this case, 3-butenoic, and 4-pentenoic acids) through a straightforward chemical pathway. The resulting monomers were then employed in UV-activated thiol-ene chemistry for digital light process (DLP). A comprehensive study of the UV-curing process was carried out by Design of Experiment (DoE) to evaluate the influence of light intensity and photoinitiator to find the optimal curing conditions. Subsequently, a thorough thermo-mechanical characterization highlighted the influence of the chemical structure on material properties. 3D printing was performed, enabling the fabrication of complex and self-stain structures with remarkable accuracy and precision. Lastly, a chemical degradation study revealed the potential for end-of-use recycling of the bio-based thermosets.

摘要

增材制造(AM)是一种成熟的技术,能够制造具有多种应用的复杂几何形状和结构。虽然它被认为是一种比传统制造更环保的方法,但一个重大挑战在于生物基替代树脂的可得性和合成的简易性。在我们将生物质增值的努力中,这项工作提出了从纤维素衍生的左旋葡萄糖酮(LGO)合成新的α,ω-二烯。这些二烯不仅合成简单,而且提供了一种可调节的合成方法。具体而言,LGO首先转化为二醇前体,随后通过直接的化学途径使用各种羧酸(在这种情况下为3-丁烯酸和4-戊烯酸)进行酯化。然后将所得单体用于紫外光活化的硫醇-烯化学用于数字光处理(DLP)。通过实验设计(DoE)对紫外光固化过程进行了全面研究,以评估光强度和光引发剂的影响,从而找到最佳固化条件。随后,深入的热机械表征突出了化学结构对材料性能的影响。进行了3D打印,能够以极高的精度制造复杂的自染色结构。最后,一项化学降解研究揭示了生物基热固性材料在使用后回收利用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验