Schrödinger, Inc., Life Sciences Software, New York, NY, USA.
Schrödinger, GmbH, Life Sciences Software, Mannheim, Germany.
J Mol Biol. 2024 Aug 15;436(16):168640. doi: 10.1016/j.jmb.2024.168640. Epub 2024 Jun 4.
Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations. We describe a method for robust treatment of alternate protonation states for titratable amino acids, which yields improved correlation with and reduced error compared to experimental binding free energies. Following careful analysis of the largest outlier cases in our dataset, we assess limitations of the default FEP+ protocols and introduce an automated script which identifies probable outlier cases that may require additional scrutiny and calculates an empirical correction for a subset of charge-related outliers. Through a series of three additional case study systems, we discuss how Protein FEP+ can be applied to real-world protein design projects, and suggest areas of further study.
基于计算自由能的方法有可能显著提高蛋白质设计工作的通量并降低成本。此类方法必须达到高度的可靠性、准确性和自动化程度,才能以影响蛋白质设计项目的方式有效地部署在实际的工业环境中。在这里,我们使用自由能微扰(FEP+)计算,对文献中来自各种系统的单点突变对蛋白质-蛋白质结合亲和力的相对变化进行了基准测试研究。我们描述了一种针对可滴定氨基酸的交替质子化状态进行稳健处理的方法,与实验结合自由能相比,该方法可提高相关性并降低误差。在仔细分析了我们数据集中最大的异常值情况后,我们评估了默认 FEP+协议的局限性,并引入了一个自动化脚本,该脚本可以识别可能需要额外检查的可能异常值情况,并针对一组与电荷相关的异常值计算经验校正值。通过三个附加案例研究系统,我们讨论了如何将蛋白质 FEP+应用于实际的蛋白质设计项目,并提出了进一步研究的领域。