Suppr超能文献

机器学习助力抗菌肽的设计特征,选择性靶向种植体周围疾病进展。

Machine learning enabled design features of antimicrobial peptides selectively targeting peri-implant disease progression.

作者信息

Boone Kyle, Tjokro Natalia, Chu Kalea N, Chen Casey, Snead Malcolm L, Tamerler Candan

机构信息

Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States.

Department of Mechanical Engineering, University of Kansas, Lawrence, KS, United States.

出版信息

Front Dent Med. 2024;5. doi: 10.3389/fdmed.2024.1372534. Epub 2024 Apr 5.

Abstract

Peri-implantitis is a complex infectious disease that manifests as progressive loss of alveolar bone around the dental implants and hyper-inflammation associated with microbial dysbiosis. Using antibiotics in treating peri-implantitis is controversial because of antibiotic resistance threats, the non-selective suppression of pathogens and commensals within the microbial community, and potentially serious systemic sequelae. Therefore, conventional treatment for peri-implantitis comprises mechanical debridement by nonsurgical or surgical approaches with adjunct local microbicidal agents. Consequently, current treatment options may not prevent relapses, as the pathogens either remain unaffected or quickly re-emerge after treatment. Successful mitigation of disease progression in peri-implantitis requires a specific mode of treatment capable of targeting keystone pathogens and restoring bacterial community balance toward commensal species. Antimicrobial peptides (AMPs) hold promise as alternative therapeutics through their bacterial specificity and targeted inhibitory activity. However, peptide sequence space exhibits complex relationships such as sparse vector encoding of sequences, including combinatorial and discrete functions describing peptide antimicrobial activity. In this paper, we generated a transparent Machine Learning (ML) model that identifies sequence-function relationships based on rough set theory using simple summaries of the hydropathic features of AMPs. Comparing the hydropathic features of peptides according to their differential activity for different classes of bacteria empowered predictability of antimicrobial targeting. Enriching the sequence diversity by a genetic algorithm, we generated numerous candidate AMPs designed for selectively targeting pathogens and predicted their activity using classifying rough sets. Empirical growth inhibition data is iteratively fed back into our ML training to generate new peptides, resulting in increasingly more rigorous rules for which peptides match targeted inhibition levels for specific bacterial strains. The subsequent top scoring candidates were empirically tested for their inhibition against keystone and accessory peri-implantitis pathogens as well as an oral commensal bacterium. A novel peptide, VL-13, was confirmed to be selectively active against a keystone pathogen. Considering the continually increasing number of oral implants placed each year and the complexity of the disease progression, prevalence of peri-implant diseases continues to rise. Our approach offers transparent ML-enabled paths towards developing antimicrobial peptide-based therapies targeting the changes in the microbial communities that can beneficially impact disease progression.

摘要

种植体周围炎是一种复杂的感染性疾病,表现为牙种植体周围牙槽骨的渐进性丧失以及与微生物群落失调相关的过度炎症。由于存在抗生素耐药性威胁、对微生物群落中病原体和共生菌的非选择性抑制以及潜在的严重全身后遗症,使用抗生素治疗种植体周围炎存在争议。因此,种植体周围炎的传统治疗包括通过非手术或手术方法进行机械清创,并辅助使用局部杀菌剂。然而,目前的治疗方法可能无法预防复发,因为病原体要么未受影响,要么在治疗后迅速重新出现。成功缓解种植体周围炎的疾病进展需要一种能够靶向关键病原体并使细菌群落平衡恢复为共生菌的特定治疗模式。抗菌肽(AMPs)因其细菌特异性和靶向抑制活性有望成为替代疗法。然而,肽序列空间呈现出复杂的关系,如序列的稀疏向量编码,包括描述肽抗菌活性的组合和离散功能。在本文中,我们生成了一个透明的机器学习(ML)模型,该模型基于粗糙集理论,利用抗菌肽亲水性特征的简单汇总来识别序列-功能关系。根据肽对不同类细菌的差异活性比较其亲水性特征,增强了抗菌靶向的可预测性。通过遗传算法丰富序列多样性,我们生成了许多设计用于选择性靶向病原体的候选抗菌肽,并使用分类粗糙集预测它们的活性。将经验性生长抑制数据迭代反馈到我们的ML训练中以生成新的肽,从而产生越来越严格的规则,即哪些肽与特定细菌菌株的靶向抑制水平相匹配。随后对得分最高的候选肽进行了针对种植体周围炎关键病原体和附属病原体以及一种口腔共生菌的抑制作用的经验性测试。一种新型肽VL-13被证实对一种关键病原体具有选择性活性。考虑到每年植入口腔种植体的数量持续增加以及疾病进展的复杂性,种植体周围疾病的患病率持续上升。我们的方法提供了基于透明机器学习的途径,以开发针对微生物群落变化的基于抗菌肽的疗法,这可能对疾病进展产生有益影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b92/11797796/db79503e4536/fdmed-05-1372534-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验