Lin Zikai, Si Yajuan, Kang Jian
Department of Biostatistics, University of Michigan.
Survey Research Center, Institute for Social Research, University of Michigan.
Ann Appl Stat. 2024 Mar;18(1):468-486. doi: 10.1214/23-aoas1797. Epub 2024 Jan 31.
Image-on-scalar regression has been a popular approach to modeling the association between brain activities and scalar characteristics in neuroimaging research. The associations could be heterogeneous across individuals in the population, as indicated by recent large-scale neuroimaging studies, for example, the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD data can inform our understanding of heterogeneous associations and how to leverage the heterogeneity and tailor interventions to increase the number of youths who benefit. It is of great interest to identify subgroups of individuals from the population such that: (1) within each subgroup the brain activities have homogeneous associations with the clinical measures; (2) across subgroups the associations are heterogeneous, and (3) the group allocation depends on individual characteristics. Existing image-on-scalar regression methods and clustering methods cannot directly achieve this goal. We propose a latent subgroup image-on-scalar regression model (LASIR) to analyze large-scale, multisite neuroimaging data with diverse sociode-mographics. LASIR introduces the latent subgroup for each individual and group-specific, spatially varying effects, with an efficient stochastic expectation maximization algorithm for inferences. We demonstrate that LASIR outperforms existing alternatives for subgroup identification of brain activation patterns with functional magnetic resonance imaging data via comprehensive simulations and applications to the ABCD study. We have released our reproducible codes for public use with the software package available on Github.
在神经影像学研究中,标量图像回归一直是一种用于建模大脑活动与标量特征之间关联的常用方法。正如最近的大规模神经影像学研究(例如青少年大脑认知发展(ABCD)研究)所示,人群中个体之间的这种关联可能是异质性的。ABCD数据可以增进我们对异质性关联的理解,以及如何利用这种异质性并量身定制干预措施,以增加受益青年的数量。从人群中识别个体亚组非常有意义,这样:(1)在每个亚组内,大脑活动与临床指标具有同质关联;(2)跨亚组的关联是异质性的;(3)组分配取决于个体特征。现有的标量图像回归方法和聚类方法无法直接实现这一目标。我们提出了一种潜在亚组标量图像回归模型(LASIR),用于分析具有不同社会人口统计学特征的大规模、多站点神经影像学数据。LASIR为每个个体引入了潜在亚组和特定于组的空间变化效应,并使用一种有效的随机期望最大化算法进行推断。通过全面的模拟以及对ABCD研究的应用,我们证明LASIR在使用功能磁共振成像数据进行大脑激活模式的亚组识别方面优于现有方法。我们已通过Github上提供的软件包发布了可重复使用的代码以供公众使用。