Suppr超能文献

基于阈值高斯过程的贝叶斯空间盲源分离

Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.

作者信息

Wu Ben, Guo Ying, Kang Jian

机构信息

Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, CN, 100872.

Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322.

出版信息

J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.

Abstract

Blind source separation (BSS) aims to separate latent source signals from their mixtures. For spatially dependent signals in high dimensional and large-scale data, such as neuroimaging, most existing BSS methods do not take into account the spatial dependence and the sparsity of the latent source signals. To address these major limitations, we propose a Bayesian spatial blind source separation (BSP-BSS) approach for neuroimaging data analysis. We assume the expectation of the observed images as a linear mixture of multiple sparse and piece-wise smooth latent source signals, for which we construct a new class of Bayesian nonparametric prior models by thresholding Gaussian processes. We assign the vMF priors to mixing coefficients in the model. Under some regularity conditions, we show that the proposed method has several desirable theoretical properties including the large support for the priors, the consistency of joint posterior distribution of the latent source intensity functions and the mixing coefficients, and the selection consistency on the number of latent sources. We use extensive simulation studies and an analysis of the resting-state fMRI data in the Autism Brain Imaging Data Exchange (ABIDE) study to demonstrate that BSP-BSS outperforms the existing method for separating latent brain networks and detecting activated brain activation in the latent sources.

摘要

盲源分离(BSS)旨在从混合信号中分离出潜在的源信号。对于高维大规模数据中的空间相关信号,如神经成像数据,大多数现有的BSS方法没有考虑潜在源信号的空间依赖性和稀疏性。为了解决这些主要限制,我们提出了一种用于神经成像数据分析的贝叶斯空间盲源分离(BSP-BSS)方法。我们假设观测图像的期望是多个稀疏且分段平滑的潜在源信号的线性混合,为此我们通过对高斯过程进行阈值处理构建了一类新的贝叶斯非参数先验模型。我们在模型中为混合系数分配vMF先验。在一些正则条件下,我们表明所提出的方法具有几个理想的理论性质,包括对先验的大支持、潜在源强度函数和混合系数联合后验分布的一致性以及潜在源数量的选择一致性。我们使用广泛的模拟研究以及对自闭症脑成像数据交换(ABIDE)研究中的静息态功能磁共振成像(fMRI)数据的分析,以证明BSP-BSS在分离潜在脑网络和检测潜在源中的激活脑区方面优于现有方法。

相似文献

1
Bayesian Spatial Blind Source Separation via the Thresholded Gaussian Process.基于阈值高斯过程的贝叶斯空间盲源分离
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.
2
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.基于软阈值高斯过程的图像标量回归
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.
4
Multi-Task Learning for Blind Source Separation.多任务学习在盲源分离中的应用。
IEEE Trans Image Process. 2018 Sep;27(9):4219-4231. doi: 10.1109/TIP.2018.2836324.
6
Bayesian blind source separation for data with network structure.具有网络结构数据的贝叶斯盲源分离
J Comput Biol. 2014 Nov;21(11):855-65. doi: 10.1089/cmb.2014.0117. Epub 2014 Oct 10.

引用本文的文献

本文引用的文献

1
Bayesian Graphical Regression.贝叶斯图形回归
J Am Stat Assoc. 2019;114(525):184-197. doi: 10.1080/01621459.2017.1389739. Epub 2018 Jun 28.
6
Scalar-on-Image Regression via the Soft-Thresholded Gaussian Process.基于软阈值高斯过程的图像标量回归
Biometrika. 2018 Mar;105(1):165-184. doi: 10.1093/biomet/asx075. Epub 2018 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验