Wu Ben, Guo Ying, Kang Jian
Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, CN, 100872.
Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322.
J Am Stat Assoc. 2024;119(545):422-433. doi: 10.1080/01621459.2022.2123336. Epub 2022 Nov 28.
Blind source separation (BSS) aims to separate latent source signals from their mixtures. For spatially dependent signals in high dimensional and large-scale data, such as neuroimaging, most existing BSS methods do not take into account the spatial dependence and the sparsity of the latent source signals. To address these major limitations, we propose a Bayesian spatial blind source separation (BSP-BSS) approach for neuroimaging data analysis. We assume the expectation of the observed images as a linear mixture of multiple sparse and piece-wise smooth latent source signals, for which we construct a new class of Bayesian nonparametric prior models by thresholding Gaussian processes. We assign the vMF priors to mixing coefficients in the model. Under some regularity conditions, we show that the proposed method has several desirable theoretical properties including the large support for the priors, the consistency of joint posterior distribution of the latent source intensity functions and the mixing coefficients, and the selection consistency on the number of latent sources. We use extensive simulation studies and an analysis of the resting-state fMRI data in the Autism Brain Imaging Data Exchange (ABIDE) study to demonstrate that BSP-BSS outperforms the existing method for separating latent brain networks and detecting activated brain activation in the latent sources.
盲源分离(BSS)旨在从混合信号中分离出潜在的源信号。对于高维大规模数据中的空间相关信号,如神经成像数据,大多数现有的BSS方法没有考虑潜在源信号的空间依赖性和稀疏性。为了解决这些主要限制,我们提出了一种用于神经成像数据分析的贝叶斯空间盲源分离(BSP-BSS)方法。我们假设观测图像的期望是多个稀疏且分段平滑的潜在源信号的线性混合,为此我们通过对高斯过程进行阈值处理构建了一类新的贝叶斯非参数先验模型。我们在模型中为混合系数分配vMF先验。在一些正则条件下,我们表明所提出的方法具有几个理想的理论性质,包括对先验的大支持、潜在源强度函数和混合系数联合后验分布的一致性以及潜在源数量的选择一致性。我们使用广泛的模拟研究以及对自闭症脑成像数据交换(ABIDE)研究中的静息态功能磁共振成像(fMRI)数据的分析,以证明BSP-BSS在分离潜在脑网络和检测潜在源中的激活脑区方面优于现有方法。