Suppr超能文献

使用深度学习方法的时间序列磁共振图像识别乳腺癌新辅助化疗的完全缓解情况

Time-Series MR Images Identifying Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using a Deep Learning Approach.

作者信息

Liu Jialing, Li Xu, Wang Gang, Zeng Weixiong, Zeng Hui, Wen Chanjuan, Xu Weimin, He Zilong, Qin Genggeng, Chen Weiguo

机构信息

Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.

Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.

出版信息

J Magn Reson Imaging. 2025 Jan;61(1):184-197. doi: 10.1002/jmri.29405. Epub 2024 Jun 8.

Abstract

BACKGROUND

Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-series dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pCR identification in BC is unclear.

PURPOSE

To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG-LSTM network.

STUDY TYPE

Retrospective.

POPULATION

Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training (n = 164) and validation set (n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set.

FIELD STRENGTH/SEQUENCE: 3-T, T2-weighted spin-echo sequence imaging, and gradient echo DCE sequence imaging.

ASSESSMENT

Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG-LSTM network to establish seven DL models using time-series DCE-MR images: pre-NAC images (t0 model), early NAC images (t1 model), post-NAC images (t2 model), pre-NAC and early NAC images (t0 + t1 model), pre-NAC and post-NAC images (t0 + t2 model), pre-NAC, early NAC and post-NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set.

STATISTICAL TESTS

The DeLong, Student's t-test, Mann-Whitney U, Chi-squared, Fisher's exact, Hosmer-Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant.

RESULTS

Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927.

DATA CONCLUSION

The combined model that used time-series DCE-MR images, clinical features and imaging features shows promise for identifying pCR in BC.

TECHNICAL EFFICACY

Stage 4.

摘要

背景

病理完全缓解(pCR)是调整乳腺癌(BC)患者后续治疗方案的重要标准。利用时间序列动态对比增强磁共振成像(DCE-MRI)的视觉几何组和长短时记忆(VGG-LSTM)网络在BC中进行pCR识别的价值尚不清楚。

目的

使用基于VGG-LSTM网络的深度学习(DL)模型识别新辅助化疗(NAC)后的pCR。

研究类型

回顾性研究。

研究对象

中心A:235例患者(47.7±10.0岁)按7:3分为训练集(n = 164)和验证集(n = 71)。中心B:150例患者(48.5±10.4岁)用作测试集。

场强/序列:3-T,T2加权自旋回波序列成像和梯度回波DCE序列成像。

评估

患者在三个连续时间点接受MRI检查:治疗前、三个周期治疗后和手术前,手动勾勒出感兴趣的肿瘤区域。组织病理学为金标准。我们使用VGG-LSTM网络利用时间序列DCE-MR图像建立了七个DL模型:NAC前图像(t0模型)、NAC早期图像(t1模型)、NAC后图像(t2模型)、NAC前和NAC早期图像(t0 + t1模型)、NAC前和NAC后图像(t0 + t2模型)、NAC前、NAC早期和NAC后图像(t0 + t1 + t2模型),以及结合临床特征和影像特征的最佳模型(联合模型)。这些模型在训练集和验证集上进行训练和优化,并在测试集上进行测试。

统计检验

进行德龙检验、学生t检验、曼-惠特尼U检验、卡方检验、费舍尔精确检验、霍斯默-莱梅肖检验、决策曲线分析和受试者工作特征分析。P < 0.05被认为具有统计学意义。

结果

与其他六个模型相比,联合模型在测试集中表现最佳,AUC为0.927。

数据结论

使用时间序列DCE-MR图像、临床特征和影像特征的联合模型在识别BC中的pCR方面显示出前景。

技术效能

4级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验