文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估ChatGPT生成的放射学报告摘要的质量和可理解性:调查研究

Evaluating the Quality and Understandability of Radiology Report Summaries Generated by ChatGPT: Survey Study.

作者信息

Sunshine Alexis, Honce Grace H, Callen Andrew L, Zander David A, Tanabe Jody L, Pisani Petrucci Samantha L, Lin Chen-Tan, Honce Justin M

机构信息

Department of Radiology, University of Colorado Anschutz Medical Campus, 19th Ave. Mail Stop C278, Aurora, CO, 80045, United States, 1 303-724-3796, 1 303-724-3795.

Hartway Evaluation Group, Denver, CO, United States.

出版信息

JMIR Form Res. 2025 Aug 27;9:e76097. doi: 10.2196/76097.


DOI:10.2196/76097
PMID:40864905
Abstract

BACKGROUND: Radiology reports convey critical medical information to health care providers and patients. Unfortunately, they are often difficult for patients to comprehend, causing confusion and anxiety, thereby limiting patient engagement in health care decision-making. Large language models (LLMs) like ChatGPT (OpenAI) can create simplified, patient-friendly report summaries to increase accessibility, albeit with errors. OBJECTIVE: We evaluated the accuracy and clarity of ChatGPT-generated summaries compared to original radiologist-assessed radiology reports, assessed patients' understanding and satisfaction with the summaries compared to the original reports, and compared the readability of the original reports and summaries using validated readability metrics. METHODS: We anonymized 30 radiology reports created by neuroradiologists at our institution (6 brain magnetic resonance imaging, 6 brain computed tomography, 6 head and neck computed tomography angiography, 6 neck computed tomography, and 6 spine computed tomography). These anonymized reports were processed by ChatGPT to produce patient-centric summaries. Four board-certified neuroradiologists evaluated the ChatGPT-generated summaries on quality and accuracy compared to the original reports, and 4 patient volunteers separately evaluated the reports and summaries on perceived understandability and satisfaction. Readability was assessed using word count and validated readability scales. RESULTS: After reading the summary, patient confidence in understanding (98%, 116/118 vs 26%, 31/118) and satisfaction regarding the level of jargon/terminology (91%, 107/118 vs 8%, 9/118) and time taken to understand the content (97%, 115/118 vs 23%, 27/118) substantially improved. Ninety-two percent (108/118) of responses indicated the summary clarified patients' questions about the report, and 98% (116/118) of responses indicated patients would use the summary if available, with 67% (79/118) of responses indicating they would want access to both the report and summary, while 26% (31/118) of responses indicated only wanting the summary. Eighty-three percent (100/120) of radiologist responses indicated the summary represented the original report "extremely well" or "very well," with only 5% (6/120) of responses indicating it did so "slightly well" or "not well at all." Five percent (6/120) of responses indicated there was missing relevant medical information in the summary, 12% (14/120) reported instances of overemphasis of nonsignificant findings, and 18% (22/120) reported instances of underemphasis of significant findings. No fabricated findings were identified. Overall, 83% (99/120) of responses indicated that the summary would definitely/probably not lead patients to incorrect conclusions about the original report, with 10% (12/120) of responses indicating the summaries may do so. CONCLUSIONS: ChatGPT-generated summaries could significantly improve perceived comprehension and satisfaction while accurately reflecting most key information from original radiology reports. Instances of minor omissions and under-/overemphasis were noted in some summaries, underscoring the need for ongoing validation and oversight. Overall, these artificial intelligence-generated, patient-centric summaries hold promise for enhancing patient-centered communication in radiology.

摘要

背景:放射学报告向医疗服务提供者和患者传达关键的医学信息。不幸的是,患者往往难以理解这些报告,从而导致困惑和焦虑,进而限制了患者参与医疗决策。像ChatGPT(OpenAI)这样的大语言模型可以创建简化的、对患者友好的报告摘要,以提高可及性,尽管存在错误。 目的:我们将ChatGPT生成的摘要与放射科医生评估的原始放射学报告进行比较,评估其准确性和清晰度;将摘要与原始报告进行比较,评估患者对摘要的理解和满意度;并使用经过验证的可读性指标比较原始报告和摘要的可读性。 方法:我们对本机构神经放射科医生创建的30份放射学报告进行匿名处理(6份脑磁共振成像、6份脑计算机断层扫描、6份头颈部计算机断层扫描血管造影、6份颈部计算机断层扫描和6份脊柱计算机断层扫描)。这些匿名报告由ChatGPT处理,以生成以患者为中心的摘要。四位获得董事会认证的神经放射科医生将ChatGPT生成的摘要与原始报告在质量和准确性方面进行评估,4名患者志愿者分别对报告和摘要在感知的可理解性和满意度方面进行评估。使用单词计数和经过验证的可读性量表评估可读性。 结果:阅读摘要后,患者在理解方面的信心(98%,116/118对26%,31/118)、对术语行话水平的满意度(91%,107/118对8%,9/118)以及理解内容所需的时间(97%,115/118对23%,27/118)都有显著提高。92%(108/118)的回复表明摘要澄清了患者对报告的疑问,98%(116/118)的回复表明如果有摘要,患者会使用,67%(79/118)的回复表明他们希望同时获取报告和摘要,而26%(31/118)的回复表明只想要摘要。83%(100/120)的放射科医生回复表明摘要“非常好”或“很好”地呈现了原始报告,只有5%(6/120)的回复表明“一般”或“完全不好”。5%(6/120)的回复表明摘要中缺少相关医学信息,12%(14/120)报告存在对无意义发现过度强调的情况,18%(22/120)报告存在对重要发现强调不足的情况。未发现虚构的发现。总体而言,83%(99/120)的回复表明摘要肯定/可能不会使患者对原始报告得出错误结论,10%(12/120)的回复表明摘要可能会导致错误结论。 结论:ChatGPT生成的摘要可以显著提高感知的理解度和满意度,同时准确反映原始放射学报告的大多数关键信息。在一些摘要中发现了轻微遗漏以及强调不足/过度强调的情况,这突出了持续验证和监督的必要性。总体而言,这些由人工智能生成的、以患者为中心的摘要有望加强放射学中以患者为中心的沟通。

相似文献

[1]
Evaluating the Quality and Understandability of Radiology Report Summaries Generated by ChatGPT: Survey Study.

JMIR Form Res. 2025-8-27

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Improving Patient Communication by Simplifying AI-Generated Dental Radiology Reports With ChatGPT: Comparative Study.

J Med Internet Res. 2025-6-9

[4]
Assessing ChatGPT's Educational Potential in Lung Cancer Radiotherapy From Clinician and Patient Perspectives: Content Quality and Readability Analysis.

JMIR Cancer. 2025-8-13

[5]
ChatGPT-4o Compared With Human Researchers in Writing Plain-Language Summaries for Cochrane Reviews: A Blinded, Randomized Non-Inferiority Controlled Trial.

Cochrane Evid Synth Methods. 2025-7-28

[6]
Using Artificial Intelligence ChatGPT to Access Medical Information About Chemical Eye Injuries: Comparative Study.

JMIR Form Res. 2025-8-13

[7]
Enhancing the Readability of Online Patient Education Materials Using Large Language Models: Cross-Sectional Study.

J Med Internet Res. 2025-6-4

[8]
Is Information About Musculoskeletal Malignancies From Large Language Models or Web Resources at a Suitable Reading Level for Patients?

Clin Orthop Relat Res. 2025-2-1

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Can artificial intelligence improve the readability of patient education information in gynecology?

Am J Obstet Gynecol. 2025-6-25

本文引用的文献

[1]
ChatGPT and radiology report: potential applications and limitations.

Radiol Med. 2024-12

[2]
Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting.

Sci Rep. 2024-6-8

[3]
Decoding medical jargon: The use of AI language models (ChatGPT-4, BARD, microsoft copilot) in radiology reports.

Patient Educ Couns. 2024-9

[4]
Quantitative Evaluation of Large Language Models to Streamline Radiology Report Impressions: A Multimodal Retrospective Analysis.

Radiology. 2024-3

[5]
Evaluating the Use of ChatGPT to Accurately Simplify Patient-centered Information about Breast Cancer Prevention and Screening.

Radiol Imaging Cancer. 2024-3

[6]
AI-Generated Clinical Summaries Require More Than Accuracy.

JAMA. 2024-2-27

[7]
Translating musculoskeletal radiology reports into patient-friendly summaries using ChatGPT-4.

Skeletal Radiol. 2024-8

[8]
Feasibility and acceptability of ChatGPT generated radiology report summaries for cancer patients.

Digit Health. 2023-12-19

[9]
Patient-centered radiology: a roadmap for outpatient imaging.

Eur Radiol. 2024-7

[10]
ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports.

Eur Radiol. 2024-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索