Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
School of Data Science, University of Virginia, Charlottesville, Virginia, USA.
Stat Med. 2024 Aug 15;43(18):3539-3561. doi: 10.1002/sim.10133. Epub 2024 Jun 9.
Ordinal longitudinal outcomes are becoming common in clinical research, particularly in the context of COVID-19 clinical trials. These outcomes are information-rich and can increase the statistical efficiency of a study when analyzed in a principled manner. We present Bayesian ordinal transition models as a flexible modeling framework to analyze ordinal longitudinal outcomes. We develop the theory from first principles and provide an application using data from the Adaptive COVID-19 Treatment Trial (ACTT-1) with code examples in R. We advocate that researchers use ordinal transition models to analyze ordinal longitudinal outcomes when appropriate alongside standard methods such as time-to-event modeling.
序贯纵向结局在临床研究中越来越常见,特别是在 COVID-19 临床试验的背景下。这些结局信息丰富,当以有原则的方式进行分析时,可以提高研究的统计效率。我们提出了贝叶斯序贯转移模型作为一种灵活的建模框架来分析序贯纵向结局。我们从基本原则出发发展理论,并提供了一个使用来自自适应 COVID-19 治疗试验 (ACTT-1)的数据的应用示例,以及在 R 中的代码示例。我们主张研究人员在适当的时候使用序贯转移模型来分析序贯纵向结局,同时结合标准方法,如事件时间建模。